基于异构多模型的非线性系统辨识

R. Orjuela, B. Marx, J. Ragot, D. Maquin
{"title":"基于异构多模型的非线性系统辨识","authors":"R. Orjuela, B. Marx, J. Ragot, D. Maquin","doi":"10.2478/amcs-2013-0009","DOIUrl":null,"url":null,"abstract":"Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state spaces are not the same and consequently they can be of various dimensions. Thanks to this feature, the complexity of the submodels can be well adapted to that of the nonlinear system introducing flexibility and generality in the modelling stage. This paper deals with off-line identification of nonlinear systems based on heterogeneous multiple models. Three optimisation criteria (global, local and combined) are investigated to obtain the submodel parameters according to the expected modelling performances. Particular attention is paid to the potential problems encountered in the identification procedure with a special focus on an undesirable phenomenon called the no output tracking effect. The origin of this difficulty is explained and an effective solution is suggested to overcome this problem in the identification task. The abilities of the model are finally illustrated via relevant identification examples showing the effectiveness of the proposed methods.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Nonlinear system identification using heterogeneous multiple models\",\"authors\":\"R. Orjuela, B. Marx, J. Ragot, D. Maquin\",\"doi\":\"10.2478/amcs-2013-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state spaces are not the same and consequently they can be of various dimensions. Thanks to this feature, the complexity of the submodels can be well adapted to that of the nonlinear system introducing flexibility and generality in the modelling stage. This paper deals with off-line identification of nonlinear systems based on heterogeneous multiple models. Three optimisation criteria (global, local and combined) are investigated to obtain the submodel parameters according to the expected modelling performances. Particular attention is paid to the potential problems encountered in the identification procedure with a special focus on an undesirable phenomenon called the no output tracking effect. The origin of this difficulty is explained and an effective solution is suggested to overcome this problem in the identification task. The abilities of the model are finally illustrated via relevant identification examples showing the effectiveness of the proposed methods.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

在控制工程问题中,多模型因其能够准确地描述各种非线性系统的非线性动态行为而得到认可。多模型是由一组子模型按照特定的聚合机制插值而成,其中异构多模型尤为重要。这种多重模型的特点是使用异构子模型,因为它们的状态空间不相同,因此它们可以具有不同的维度。由于这一特征,子模型的复杂性可以很好地适应非线性系统的复杂性,在建模阶段引入了灵活性和通用性。本文研究了基于异构多模型的非线性系统离线辨识问题。研究了三种优化准则(全局、局部和组合),根据期望的建模性能获得子模型参数。特别注意识别过程中遇到的潜在问题,特别关注称为无输出跟踪效应的不良现象。阐述了这一困难的根源,并提出了一种有效的解决方法来克服识别任务中的这一问题。最后通过相关的识别实例说明了该模型的能力,证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear system identification using heterogeneous multiple models
Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state spaces are not the same and consequently they can be of various dimensions. Thanks to this feature, the complexity of the submodels can be well adapted to that of the nonlinear system introducing flexibility and generality in the modelling stage. This paper deals with off-line identification of nonlinear systems based on heterogeneous multiple models. Three optimisation criteria (global, local and combined) are investigated to obtain the submodel parameters according to the expected modelling performances. Particular attention is paid to the potential problems encountered in the identification procedure with a special focus on an undesirable phenomenon called the no output tracking effect. The origin of this difficulty is explained and an effective solution is suggested to overcome this problem in the identification task. The abilities of the model are finally illustrated via relevant identification examples showing the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信