{"title":"用对数线性模型进行问题分类","authors":"Phil Blunsom, K. Kocik, J. Curran","doi":"10.1145/1148170.1148282","DOIUrl":null,"url":null,"abstract":"Question classification has become a crucial step in modern question answering systems. Previous work has demonstrated the effectiveness of statistical machine learning approaches to this problem. This paper presents a new approach to building a question classifier using log-linear models. Evidence from a rich and diverse set of syntactic and semantic features is evaluated, as well as approaches which exploit the hierarchical structure of the question classes.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Question classification with log-linear models\",\"authors\":\"Phil Blunsom, K. Kocik, J. Curran\",\"doi\":\"10.1145/1148170.1148282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Question classification has become a crucial step in modern question answering systems. Previous work has demonstrated the effectiveness of statistical machine learning approaches to this problem. This paper presents a new approach to building a question classifier using log-linear models. Evidence from a rich and diverse set of syntactic and semantic features is evaluated, as well as approaches which exploit the hierarchical structure of the question classes.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Question classification has become a crucial step in modern question answering systems. Previous work has demonstrated the effectiveness of statistical machine learning approaches to this problem. This paper presents a new approach to building a question classifier using log-linear models. Evidence from a rich and diverse set of syntactic and semantic features is evaluated, as well as approaches which exploit the hierarchical structure of the question classes.