通过二元达布变换的耦合复修正Korteweg-de Vries系统的孤子解

{"title":"通过二元达布变换的耦合复修正Korteweg-de Vries系统的孤子解","authors":"","doi":"10.52280/pujm.2021.531002","DOIUrl":null,"url":null,"abstract":"In this article, we find various kind of solutions of coupled complex modified (KdV) system by using very interesting method binary Darboux transformation. Generally the solutions are classified into zero seed and non-zero seed. In zero seed solutions, we find breather solution and one soliton solution. While in non-zero seed solutions, we obtain bright-bright solitons, w-shaped solitons, bright-dark solitons, periodic and rouge waves solutions. The behavior of these solutions can easily examine from figures.","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton solutions of coupled complex modified Korteweg-de Vries system through\\nBinary Darboux transformation\",\"authors\":\"\",\"doi\":\"10.52280/pujm.2021.531002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we find various kind of solutions of coupled complex modified (KdV) system by using very interesting method binary Darboux transformation. Generally the solutions are classified into zero seed and non-zero seed. In zero seed solutions, we find breather solution and one soliton solution. While in non-zero seed solutions, we obtain bright-bright solitons, w-shaped solitons, bright-dark solitons, periodic and rouge waves solutions. The behavior of these solutions can easily examine from figures.\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2021.531002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.531002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用一种非常有趣的方法——二元达布变换,求出了耦合复修正(KdV)系统的各种解。一般解分为零种子和非零种子。在零种子解中,我们找到呼吸解和一个孤子解。而在非零种子解中,我们得到了亮-亮孤子、w形孤子、亮-暗孤子、周期波解和胭脂波解。这些解的性质可以很容易地从图形中检验出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton solutions of coupled complex modified Korteweg-de Vries system through Binary Darboux transformation
In this article, we find various kind of solutions of coupled complex modified (KdV) system by using very interesting method binary Darboux transformation. Generally the solutions are classified into zero seed and non-zero seed. In zero seed solutions, we find breather solution and one soliton solution. While in non-zero seed solutions, we obtain bright-bright solitons, w-shaped solitons, bright-dark solitons, periodic and rouge waves solutions. The behavior of these solutions can easily examine from figures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信