一种用于交通视频数据挖掘的鲁棒道路兴趣区域识别方案

Anes Madani, Suman Kumar, Linh Ba Nguyen, Jiling Zhong
{"title":"一种用于交通视频数据挖掘的鲁棒道路兴趣区域识别方案","authors":"Anes Madani, Suman Kumar, Linh Ba Nguyen, Jiling Zhong","doi":"10.1109/ICCNC.2019.8685513","DOIUrl":null,"url":null,"abstract":"Traffic video data mining applications demand a road region of interest be identified. Typically, the region of interest is drawn manually, thus making it challenging to design large scale data mining applications utilizing widely available open access live stream traffic cameras since diverse scenarios require diverse region drawings. This paper presents a novel algorithm to identify road region of interest, therefore, automating the otherwise a manual process and making it applicable to diverse traffic live stream scenarios encountered in practice. The algorithm utilizes problem domain property of vehicle mobility constraints. Through experimentation, we show that algorithm is robustly resistant to the wide variety of cases of camera resolution, traffic volume, light condition, camera shakiness etc. The algorithm aims to simplify the overall design of large scale open camera traffic video mining task to aid next generation transportation-data-as-a-service based applications.","PeriodicalId":161815,"journal":{"name":"2019 International Conference on Computing, Networking and Communications (ICNC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Road Region of Interest Identification Scheme for Traffic-Video Data Mining\",\"authors\":\"Anes Madani, Suman Kumar, Linh Ba Nguyen, Jiling Zhong\",\"doi\":\"10.1109/ICCNC.2019.8685513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic video data mining applications demand a road region of interest be identified. Typically, the region of interest is drawn manually, thus making it challenging to design large scale data mining applications utilizing widely available open access live stream traffic cameras since diverse scenarios require diverse region drawings. This paper presents a novel algorithm to identify road region of interest, therefore, automating the otherwise a manual process and making it applicable to diverse traffic live stream scenarios encountered in practice. The algorithm utilizes problem domain property of vehicle mobility constraints. Through experimentation, we show that algorithm is robustly resistant to the wide variety of cases of camera resolution, traffic volume, light condition, camera shakiness etc. The algorithm aims to simplify the overall design of large scale open camera traffic video mining task to aid next generation transportation-data-as-a-service based applications.\",\"PeriodicalId\":161815,\"journal\":{\"name\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2019.8685513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2019.8685513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交通视频数据挖掘应用需要识别感兴趣的道路区域。通常,感兴趣的区域是手动绘制的,因此,由于不同的场景需要不同的区域绘图,因此利用广泛可用的开放访问流交通摄像机设计大规模数据挖掘应用程序具有挑战性。本文提出了一种新的算法来识别感兴趣的道路区域,从而使人工过程自动化,并使其适用于实践中遇到的各种交通直播场景。该算法利用了车辆移动性约束的问题域特性。实验结果表明,该算法对摄像机分辨率、交通量、光照条件、摄像机晃动等多种情况都具有较强的抗干扰能力。该算法旨在简化大规模开放式摄像机交通视频挖掘任务的总体设计,为下一代基于交通数据即服务的应用提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Road Region of Interest Identification Scheme for Traffic-Video Data Mining
Traffic video data mining applications demand a road region of interest be identified. Typically, the region of interest is drawn manually, thus making it challenging to design large scale data mining applications utilizing widely available open access live stream traffic cameras since diverse scenarios require diverse region drawings. This paper presents a novel algorithm to identify road region of interest, therefore, automating the otherwise a manual process and making it applicable to diverse traffic live stream scenarios encountered in practice. The algorithm utilizes problem domain property of vehicle mobility constraints. Through experimentation, we show that algorithm is robustly resistant to the wide variety of cases of camera resolution, traffic volume, light condition, camera shakiness etc. The algorithm aims to simplify the overall design of large scale open camera traffic video mining task to aid next generation transportation-data-as-a-service based applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信