关于Oct1+-Minor-Free图和Oct2+-Minor-Free图的注解

Wenyan Jia, Shuai Kou, Weihua Yang, Chengfu Qin
{"title":"关于Oct1+-Minor-Free图和Oct2+-Minor-Free图的注解","authors":"Wenyan Jia, Shuai Kou, Weihua Yang, Chengfu Qin","doi":"10.1142/s0219265921500304","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] and [Formula: see text] be the planar and non-planar graphs, respectively, obtained from the Octahedron by 3-splitting a vertex. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is [Formula: see text], [Formula: see text] [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices. We also show that a planar graph is [Formula: see text]-minor-free if and only if it is constructed by repeatedly taking 0-, 1-, 2-sums starting from [Formula: see text], where [Formula: see text] is the set of graphs obtained by repeatedly taking the special 3-sums of [Formula: see text] and [Formula: see text] is the graph obtained from two 5-cycles [Formula: see text], [Formula: see text] by adding the five edges [Formula: see text] for all [Formula: see text]. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is planar, [Formula: see text] [Formula: see text], the line graph of [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices.","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Oct1+-Minor-Free Graphs and Oct2+-Minor-Free Graphs\",\"authors\":\"Wenyan Jia, Shuai Kou, Weihua Yang, Chengfu Qin\",\"doi\":\"10.1142/s0219265921500304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] and [Formula: see text] be the planar and non-planar graphs, respectively, obtained from the Octahedron by 3-splitting a vertex. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is [Formula: see text], [Formula: see text] [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices. We also show that a planar graph is [Formula: see text]-minor-free if and only if it is constructed by repeatedly taking 0-, 1-, 2-sums starting from [Formula: see text], where [Formula: see text] is the set of graphs obtained by repeatedly taking the special 3-sums of [Formula: see text] and [Formula: see text] is the graph obtained from two 5-cycles [Formula: see text], [Formula: see text] by adding the five edges [Formula: see text] for all [Formula: see text]. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is planar, [Formula: see text] [Formula: see text], the line graph of [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices.\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265921500304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]和[公式:见文]分别为顶点三分得到的八面体平面图形和非平面图形。对于[公式:见文],我们证明了如果一个4连通图是[公式:见文]-无次元的,那么它是[公式:见文],[公式:见文][公式:见文]或由[公式:见文]通过重复4分顶点得到。我们也表明平面图(公式:看到文本)-minor-free当且仅当它是由多次以0 - 1 -,两点从[公式:看到文本],[公式:看到文本]在哪里的集合图形通过反复的特殊3-sums[公式:看到文本]和[公式:看到文本]获得的图像从两个5-cycles[公式:看到文本],[公式:看到文本]通过添加五个边(公式:看到文本)(公式:看到文本)。对于[公式:见文],我们证明了如果一个四连通图是[公式:见文]-无次元的,那么它是平面的,[公式:见文][公式:见文],[公式:见文]的线形图或由[公式:见文]通过重复4分顶点得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Oct1+-Minor-Free Graphs and Oct2+-Minor-Free Graphs
Let [Formula: see text] and [Formula: see text] be the planar and non-planar graphs, respectively, obtained from the Octahedron by 3-splitting a vertex. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is [Formula: see text], [Formula: see text] [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices. We also show that a planar graph is [Formula: see text]-minor-free if and only if it is constructed by repeatedly taking 0-, 1-, 2-sums starting from [Formula: see text], where [Formula: see text] is the set of graphs obtained by repeatedly taking the special 3-sums of [Formula: see text] and [Formula: see text] is the graph obtained from two 5-cycles [Formula: see text], [Formula: see text] by adding the five edges [Formula: see text] for all [Formula: see text]. For [Formula: see text], we prove that if a 4-connected graph is [Formula: see text]-minor-free, then it is planar, [Formula: see text] [Formula: see text], the line graph of [Formula: see text] or it is obtained from [Formula: see text] by repeatedly 4-splitting vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信