聚碳酸酯和铝电子外壳内瞬态水分和温度分布的数值模拟

P. S. Nasirabadi, Masoud Jabbari, J. Hattel
{"title":"聚碳酸酯和铝电子外壳内瞬态水分和温度分布的数值模拟","authors":"P. S. Nasirabadi, Masoud Jabbari, J. Hattel","doi":"10.1109/EUROSIME.2016.7463382","DOIUrl":null,"url":null,"abstract":"The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CFD) analysis has been proven as a useful tool to exploit the detailed and visualized information about the fluid flows; and hence it can be helpful for predicting local climate inside the electronic enclosures. In this study, the temperature and moisture distributions inside an idealized electronic enclosure with some heat producing components are investigated. It is shown how the enclosure material can influence local climate inside the enclosure using transient numerical simulations. The effect of heat transfer coefficient and wall thickness of the enclosure is also investigated. The enclosure material and the heat transfer coefficient of the enclosure with the environment are found to be influential on the mean temperature and relative humidity; however, the significance of their effects are not the same at different levels. Natural convection plays a key role in RH and temperature distribution.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures\",\"authors\":\"P. S. Nasirabadi, Masoud Jabbari, J. Hattel\",\"doi\":\"10.1109/EUROSIME.2016.7463382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CFD) analysis has been proven as a useful tool to exploit the detailed and visualized information about the fluid flows; and hence it can be helpful for predicting local climate inside the electronic enclosures. In this study, the temperature and moisture distributions inside an idealized electronic enclosure with some heat producing components are investigated. It is shown how the enclosure material can influence local climate inside the enclosure using transient numerical simulations. The effect of heat transfer coefficient and wall thickness of the enclosure is also investigated. The enclosure material and the heat transfer coefficient of the enclosure with the environment are found to be influential on the mean temperature and relative humidity; however, the significance of their effects are not the same at different levels. Natural convection plays a key role in RH and temperature distribution.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

开发可靠的电子产品的挑战需要大量的资源和知识。温度和热特性直接影响电子产品的使用寿命。此外,湿气会损坏电子元件。目前,计算流体动力学(CFD)分析已被证明是一种利用流体流动的详细和可视化信息的有用工具;因此,它可以帮助预测电子外壳内的当地气候。本文研究了一个带有发热元件的理想电子外壳内的温度和水分分布。通过瞬态数值模拟,说明了围护材料对围护内局部气候的影响。研究了换热系数和壁厚对传热的影响。发现围护材料和围护与环境的换热系数对平均温度和相对湿度有影响;然而,在不同的水平上,其作用的显著性是不一样的。自然对流在相对湿度和温度分布中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures
The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CFD) analysis has been proven as a useful tool to exploit the detailed and visualized information about the fluid flows; and hence it can be helpful for predicting local climate inside the electronic enclosures. In this study, the temperature and moisture distributions inside an idealized electronic enclosure with some heat producing components are investigated. It is shown how the enclosure material can influence local climate inside the enclosure using transient numerical simulations. The effect of heat transfer coefficient and wall thickness of the enclosure is also investigated. The enclosure material and the heat transfer coefficient of the enclosure with the environment are found to be influential on the mean temperature and relative humidity; however, the significance of their effects are not the same at different levels. Natural convection plays a key role in RH and temperature distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信