核机的鲁棒树码逼近

William B. March, Bo Xiao, Sameer Tharakan, Chenhan D. Yu, G. Biros
{"title":"核机的鲁棒树码逼近","authors":"William B. March, Bo Xiao, Sameer Tharakan, Chenhan D. Yu, G. Biros","doi":"10.1145/2783258.2783272","DOIUrl":null,"url":null,"abstract":"Since exact evaluation of a kernel matrix requires O(N2) work, scalable learning algorithms using kernels must approximate the kernel matrix. This approximation must be robust to the kernel parameters, for example the bandwidth for the Gaussian kernel. We consider two approximation methods: Nystrom and an algebraic treecode developed in our group. Nystrom methods construct a global low-rank approximation of the kernel matrix. Treecodes approximate just the off-diagonal blocks, typically using a hierarchical decomposition. We present a theoretical error analysis of our treecode and relate it to the error of Nystrom methods. Our analysis reveals how the block-rank structure of the kernel matrix controls the performance of the treecode. We evaluate our treecode by comparing it to the classical Nystrom method and a state-of-the-art fast approximate Nystrom method. We test the kernel matrix approximation accuracy for several different bandwidths and datasets. On the MNIST2M dataset (2M points in 784 dimensions) for a Gaussian kernel with bandwidth h=1, the Nystrom methods' error is over 90% whereas our treecode delivers error less than 1%. We also test the performance of the three methods on binary classification using two models: a Bayes classifier and kernel ridge regression. Our evaluation reveals the existence of bandwidth values that should be examined in cross-validation but whose corresponding kernel matrices cannot be approximated well by Nystrom methods. In contrast, the treecode scheme performs much better for these values.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robust Treecode Approximation for Kernel Machines\",\"authors\":\"William B. March, Bo Xiao, Sameer Tharakan, Chenhan D. Yu, G. Biros\",\"doi\":\"10.1145/2783258.2783272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since exact evaluation of a kernel matrix requires O(N2) work, scalable learning algorithms using kernels must approximate the kernel matrix. This approximation must be robust to the kernel parameters, for example the bandwidth for the Gaussian kernel. We consider two approximation methods: Nystrom and an algebraic treecode developed in our group. Nystrom methods construct a global low-rank approximation of the kernel matrix. Treecodes approximate just the off-diagonal blocks, typically using a hierarchical decomposition. We present a theoretical error analysis of our treecode and relate it to the error of Nystrom methods. Our analysis reveals how the block-rank structure of the kernel matrix controls the performance of the treecode. We evaluate our treecode by comparing it to the classical Nystrom method and a state-of-the-art fast approximate Nystrom method. We test the kernel matrix approximation accuracy for several different bandwidths and datasets. On the MNIST2M dataset (2M points in 784 dimensions) for a Gaussian kernel with bandwidth h=1, the Nystrom methods' error is over 90% whereas our treecode delivers error less than 1%. We also test the performance of the three methods on binary classification using two models: a Bayes classifier and kernel ridge regression. Our evaluation reveals the existence of bandwidth values that should be examined in cross-validation but whose corresponding kernel matrices cannot be approximated well by Nystrom methods. In contrast, the treecode scheme performs much better for these values.\",\"PeriodicalId\":243428,\"journal\":{\"name\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

由于核矩阵的精确求值需要O(N2)功,使用核的可扩展学习算法必须近似核矩阵。这种近似必须对核参数具有鲁棒性,例如高斯核的带宽。我们考虑了两种近似方法:Nystrom和我们小组开发的代数树码。Nystrom方法构造核矩阵的全局低秩逼近。树码只近似非对角线块,通常使用分层分解。我们提出了我们的树码的理论误差分析,并将其与Nystrom方法的误差联系起来。我们的分析揭示了核矩阵的块秩结构如何控制树码的性能。我们通过比较经典的Nystrom方法和最先进的快速近似Nystrom方法来评估我们的树码。我们测试了几种不同带宽和数据集的核矩阵近似精度。在带宽为h=1的高斯核的MNIST2M数据集(784维的2M点)上,Nystrom方法的误差超过90%,而我们的treecode的误差小于1%。我们还使用贝叶斯分类器和核脊回归两种模型测试了这三种方法在二值分类上的性能。我们的评估揭示了带宽值的存在,这些值应该在交叉验证中进行检查,但其相应的核矩阵不能用Nystrom方法很好地近似。相比之下,对于这些值,树码方案的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Treecode Approximation for Kernel Machines
Since exact evaluation of a kernel matrix requires O(N2) work, scalable learning algorithms using kernels must approximate the kernel matrix. This approximation must be robust to the kernel parameters, for example the bandwidth for the Gaussian kernel. We consider two approximation methods: Nystrom and an algebraic treecode developed in our group. Nystrom methods construct a global low-rank approximation of the kernel matrix. Treecodes approximate just the off-diagonal blocks, typically using a hierarchical decomposition. We present a theoretical error analysis of our treecode and relate it to the error of Nystrom methods. Our analysis reveals how the block-rank structure of the kernel matrix controls the performance of the treecode. We evaluate our treecode by comparing it to the classical Nystrom method and a state-of-the-art fast approximate Nystrom method. We test the kernel matrix approximation accuracy for several different bandwidths and datasets. On the MNIST2M dataset (2M points in 784 dimensions) for a Gaussian kernel with bandwidth h=1, the Nystrom methods' error is over 90% whereas our treecode delivers error less than 1%. We also test the performance of the three methods on binary classification using two models: a Bayes classifier and kernel ridge regression. Our evaluation reveals the existence of bandwidth values that should be examined in cross-validation but whose corresponding kernel matrices cannot be approximated well by Nystrom methods. In contrast, the treecode scheme performs much better for these values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信