采用特定边界条件技术对经过功率循环测试的绝缘栅双极晶体管模块进行电热分析

S. Chiang, T. Hung, Hsien-Chih Ou, K. Chiang
{"title":"采用特定边界条件技术对经过功率循环测试的绝缘栅双极晶体管模块进行电热分析","authors":"S. Chiang, T. Hung, Hsien-Chih Ou, K. Chiang","doi":"10.1109/ESIME.2011.5765766","DOIUrl":null,"url":null,"abstract":"The Insulated Gate Bipolar Transistor (IGBT) module subjected to a power cycle test will induce a heat concentration zone, rapid change of temperature profile and non-uniform temperature distribution on the IGBT chip. The variation of junction temperature can affect the lifetime of the IGBT module. However, the test module contains several components with different scales and material characteristics. As such, it is difficult to analyze the thermal dissipation and temperature distribution of the IGBT chip under power cycle test conditions using conventional finite element modeling technique. A local/global methodology is proposed in this study, in conduction analysis, it only require to construct a local finite element model in conjunction with a set of specified boundary conditions (SBC) where the temperatures are obtained from the computational fluid dynamics (CFD) results, this hybrid modeling technology can make the analysis process easier and more convenient.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Electro-thermal analysis of the Insulated Gate Bipolar Transistor module subjected to power cycling test using specified boundary condition technology\",\"authors\":\"S. Chiang, T. Hung, Hsien-Chih Ou, K. Chiang\",\"doi\":\"10.1109/ESIME.2011.5765766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Insulated Gate Bipolar Transistor (IGBT) module subjected to a power cycle test will induce a heat concentration zone, rapid change of temperature profile and non-uniform temperature distribution on the IGBT chip. The variation of junction temperature can affect the lifetime of the IGBT module. However, the test module contains several components with different scales and material characteristics. As such, it is difficult to analyze the thermal dissipation and temperature distribution of the IGBT chip under power cycle test conditions using conventional finite element modeling technique. A local/global methodology is proposed in this study, in conduction analysis, it only require to construct a local finite element model in conjunction with a set of specified boundary conditions (SBC) where the temperatures are obtained from the computational fluid dynamics (CFD) results, this hybrid modeling technology can make the analysis process easier and more convenient.\",\"PeriodicalId\":115489,\"journal\":{\"name\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2011.5765766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

绝缘栅双极晶体管(IGBT)模块经过功率循环测试后,会在IGBT芯片上产生一个热集中区,温度分布变化迅速,温度分布不均匀。结温的变化会影响IGBT模块的寿命。然而,测试模块包含几个具有不同规模和材料特性的组件。因此,使用传统的有限元建模技术很难分析IGBT芯片在功率循环测试条件下的散热和温度分布。本研究提出了一种局部/全局方法,在传导分析中,只需要构建局部有限元模型,并结合一组指定的边界条件(SBC),其中温度由计算流体力学(CFD)结果获得,这种混合建模技术可以使分析过程更加简单和方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-thermal analysis of the Insulated Gate Bipolar Transistor module subjected to power cycling test using specified boundary condition technology
The Insulated Gate Bipolar Transistor (IGBT) module subjected to a power cycle test will induce a heat concentration zone, rapid change of temperature profile and non-uniform temperature distribution on the IGBT chip. The variation of junction temperature can affect the lifetime of the IGBT module. However, the test module contains several components with different scales and material characteristics. As such, it is difficult to analyze the thermal dissipation and temperature distribution of the IGBT chip under power cycle test conditions using conventional finite element modeling technique. A local/global methodology is proposed in this study, in conduction analysis, it only require to construct a local finite element model in conjunction with a set of specified boundary conditions (SBC) where the temperatures are obtained from the computational fluid dynamics (CFD) results, this hybrid modeling technology can make the analysis process easier and more convenient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信