基于树突格联想记忆的多元数据映射

G. Urcid, Rocio Morales-Salgado, G. Ritter
{"title":"基于树突格联想记忆的多元数据映射","authors":"G. Urcid, Rocio Morales-Salgado, G. Ritter","doi":"10.1109/LA-CCI.2017.8285687","DOIUrl":null,"url":null,"abstract":"We describe a dendritic lattice hetero-associative memory (DLHAM) that performs multivariate numerical data mapping with respect to a set of prototype data vectors selected by diverse objective or subjective criteria. The memory is a feedforward four-layer dendritic neural network based on lattice algebra operations that computes the nearest match between input and prototype data vectors. Our approach shows the inherent capability of n-dimensional vector association to realize coarse or fine data mapping that is computationally simple. Specifically, we apply the DLHAM in a two stage algorithm to the quantization and transfer of Red-Green-Blue (RGB) color coded images. Input color pixels are first quantized and then the resulting representative colors are mapped to another set of palette colors by hetero-association. Examples and quantization error are included to show the DLHAM performance.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariate data mapping based on dendritic lattice associative memories\",\"authors\":\"G. Urcid, Rocio Morales-Salgado, G. Ritter\",\"doi\":\"10.1109/LA-CCI.2017.8285687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a dendritic lattice hetero-associative memory (DLHAM) that performs multivariate numerical data mapping with respect to a set of prototype data vectors selected by diverse objective or subjective criteria. The memory is a feedforward four-layer dendritic neural network based on lattice algebra operations that computes the nearest match between input and prototype data vectors. Our approach shows the inherent capability of n-dimensional vector association to realize coarse or fine data mapping that is computationally simple. Specifically, we apply the DLHAM in a two stage algorithm to the quantization and transfer of Red-Green-Blue (RGB) color coded images. Input color pixels are first quantized and then the resulting representative colors are mapped to another set of palette colors by hetero-association. Examples and quantization error are included to show the DLHAM performance.\",\"PeriodicalId\":144567,\"journal\":{\"name\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI.2017.8285687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了一种树突状晶格异联想记忆(DLHAM),它根据不同客观或主观标准选择的一组原型数据向量执行多元数值数据映射。存储器是一个前馈的四层树突神经网络,基于晶格代数运算,计算输入和原型数据向量之间最接近的匹配。我们的方法显示了n维向量关联的固有能力,可以实现计算简单的粗或精数据映射。具体来说,我们将DLHAM在两阶段算法中应用于红绿蓝(RGB)彩色编码图像的量化和传输。首先对输入颜色像素进行量化,然后通过异关联将得到的代表性颜色映射到另一组调色板颜色。通过实例和量化误差来说明DLHAM的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate data mapping based on dendritic lattice associative memories
We describe a dendritic lattice hetero-associative memory (DLHAM) that performs multivariate numerical data mapping with respect to a set of prototype data vectors selected by diverse objective or subjective criteria. The memory is a feedforward four-layer dendritic neural network based on lattice algebra operations that computes the nearest match between input and prototype data vectors. Our approach shows the inherent capability of n-dimensional vector association to realize coarse or fine data mapping that is computationally simple. Specifically, we apply the DLHAM in a two stage algorithm to the quantization and transfer of Red-Green-Blue (RGB) color coded images. Input color pixels are first quantized and then the resulting representative colors are mapped to another set of palette colors by hetero-association. Examples and quantization error are included to show the DLHAM performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信