遗忘因子最小二乘算法的收敛性

F. Ding, Tao Ding
{"title":"遗忘因子最小二乘算法的收敛性","authors":"F. Ding, Tao Ding","doi":"10.1109/PACRIM.2001.953662","DOIUrl":null,"url":null,"abstract":"Convergence of the forgetting factor least square (FFLS) algorithm is analyzed by using stochastic process theory; and the upper bound of the parameter estimation error is derived. For time-varying stochastic systems, the FFLS algorithm is capable of tracking the time-varying parameters and the parameter estimation error is bounded. The upper bound of the parameter estimation error can be minimized by choosing the forgetting factor properly. Simulated results obtained support the theoretical findings.","PeriodicalId":261724,"journal":{"name":"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Convergence of forgetting factor least square algorithms\",\"authors\":\"F. Ding, Tao Ding\",\"doi\":\"10.1109/PACRIM.2001.953662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convergence of the forgetting factor least square (FFLS) algorithm is analyzed by using stochastic process theory; and the upper bound of the parameter estimation error is derived. For time-varying stochastic systems, the FFLS algorithm is capable of tracking the time-varying parameters and the parameter estimation error is bounded. The upper bound of the parameter estimation error can be minimized by choosing the forgetting factor properly. Simulated results obtained support the theoretical findings.\",\"PeriodicalId\":261724,\"journal\":{\"name\":\"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2001.953662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2001.953662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用随机过程理论分析了遗忘因子最小二乘(FFLS)算法的收敛性;并推导了参数估计误差的上界。对于时变随机系统,FFLS算法具有跟踪时变参数的能力,参数估计误差有界。适当选择遗忘因子可以使参数估计误差的上界最小。模拟结果支持了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of forgetting factor least square algorithms
Convergence of the forgetting factor least square (FFLS) algorithm is analyzed by using stochastic process theory; and the upper bound of the parameter estimation error is derived. For time-varying stochastic systems, the FFLS algorithm is capable of tracking the time-varying parameters and the parameter estimation error is bounded. The upper bound of the parameter estimation error can be minimized by choosing the forgetting factor properly. Simulated results obtained support the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信