Xue-jiao Feng, Xiaoqiang Chen, Ying Wang, Jiarong Wang
{"title":"耦合磁共振无线电力传输仿真研究","authors":"Xue-jiao Feng, Xiaoqiang Chen, Ying Wang, Jiarong Wang","doi":"10.1109/ISNE.2019.8896538","DOIUrl":null,"url":null,"abstract":"The design of wireless power transfer via coupled magnetic resonances (CMR-WPT) can be used in the power transmission system of medical equipment, such as cardiac pacemaker, to solve the shortcomings of traditional energy supply. Considering the small size of implantable medical devices and the 8-shape coil, and using the finite element simulation software to analyze the effect of various relevant parameters on the output power, so as to obtain the optimal parameters of the system. The magnetic flux density distribution in the model was compared with the limits set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) to evaluate the safety of electromagnetic exposure and the results show that the system can transmit wireless power safely.","PeriodicalId":405565,"journal":{"name":"2019 8th International Symposium on Next Generation Electronics (ISNE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Simulation of Wireless Power Transfer Via Coupled Magnetic Resonances\",\"authors\":\"Xue-jiao Feng, Xiaoqiang Chen, Ying Wang, Jiarong Wang\",\"doi\":\"10.1109/ISNE.2019.8896538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of wireless power transfer via coupled magnetic resonances (CMR-WPT) can be used in the power transmission system of medical equipment, such as cardiac pacemaker, to solve the shortcomings of traditional energy supply. Considering the small size of implantable medical devices and the 8-shape coil, and using the finite element simulation software to analyze the effect of various relevant parameters on the output power, so as to obtain the optimal parameters of the system. The magnetic flux density distribution in the model was compared with the limits set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) to evaluate the safety of electromagnetic exposure and the results show that the system can transmit wireless power safely.\",\"PeriodicalId\":405565,\"journal\":{\"name\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Symposium on Next Generation Electronics (ISNE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISNE.2019.8896538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Symposium on Next Generation Electronics (ISNE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNE.2019.8896538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on the Simulation of Wireless Power Transfer Via Coupled Magnetic Resonances
The design of wireless power transfer via coupled magnetic resonances (CMR-WPT) can be used in the power transmission system of medical equipment, such as cardiac pacemaker, to solve the shortcomings of traditional energy supply. Considering the small size of implantable medical devices and the 8-shape coil, and using the finite element simulation software to analyze the effect of various relevant parameters on the output power, so as to obtain the optimal parameters of the system. The magnetic flux density distribution in the model was compared with the limits set by the International Commission on Non-ionizing Radiation Protection (ICNIRP) to evaluate the safety of electromagnetic exposure and the results show that the system can transmit wireless power safely.