{"title":"基于Dyna方法的启发式动态规划移动机器人路径规划","authors":"Seaar Al Dabooni, D. Wunsch","doi":"10.1109/IJCNN.2016.7727679","DOIUrl":null,"url":null,"abstract":"This paper presents a direct heuristic dynamic programming (HDP) based on Dyna planning (Dyna_HDP) for online model learning in a Markov decision process. This novel technique is composed of HDP policy learning to construct the Dyna agent for speeding up the learning time. We evaluate Dyna_HDP on a differential-drive wheeled mobile robot navigation problem in a 2D maze. The simulation is introduced to compare Dyna_HDP with other traditional reinforcement learning algorithms, namely one step Q-learning, Sarsa (λ), and Dyna_Q, under the same benchmark conditions. We demonstrate that Dyna_HDP has a faster near-optimal path than other algorithms, with high stability. In addition, we also confirm that the Dyna_HDP method can be applied in a multi-robot path planning problem. The virtual common environment model is learned from sharing the robots' experiences which significantly reduces the learning time.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Heuristic dynamic programming for mobile robot path planning based on Dyna approach\",\"authors\":\"Seaar Al Dabooni, D. Wunsch\",\"doi\":\"10.1109/IJCNN.2016.7727679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a direct heuristic dynamic programming (HDP) based on Dyna planning (Dyna_HDP) for online model learning in a Markov decision process. This novel technique is composed of HDP policy learning to construct the Dyna agent for speeding up the learning time. We evaluate Dyna_HDP on a differential-drive wheeled mobile robot navigation problem in a 2D maze. The simulation is introduced to compare Dyna_HDP with other traditional reinforcement learning algorithms, namely one step Q-learning, Sarsa (λ), and Dyna_Q, under the same benchmark conditions. We demonstrate that Dyna_HDP has a faster near-optimal path than other algorithms, with high stability. In addition, we also confirm that the Dyna_HDP method can be applied in a multi-robot path planning problem. The virtual common environment model is learned from sharing the robots' experiences which significantly reduces the learning time.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heuristic dynamic programming for mobile robot path planning based on Dyna approach
This paper presents a direct heuristic dynamic programming (HDP) based on Dyna planning (Dyna_HDP) for online model learning in a Markov decision process. This novel technique is composed of HDP policy learning to construct the Dyna agent for speeding up the learning time. We evaluate Dyna_HDP on a differential-drive wheeled mobile robot navigation problem in a 2D maze. The simulation is introduced to compare Dyna_HDP with other traditional reinforcement learning algorithms, namely one step Q-learning, Sarsa (λ), and Dyna_Q, under the same benchmark conditions. We demonstrate that Dyna_HDP has a faster near-optimal path than other algorithms, with high stability. In addition, we also confirm that the Dyna_HDP method can be applied in a multi-robot path planning problem. The virtual common environment model is learned from sharing the robots' experiences which significantly reduces the learning time.