形态学反射SIGMORPHON 2016共享任务的LMU系统

Katharina Kann, Hinrich Schütze
{"title":"形态学反射SIGMORPHON 2016共享任务的LMU系统","authors":"Katharina Kann, Hinrich Schütze","doi":"10.18653/v1/W16-2010","DOIUrl":null,"url":null,"abstract":"This paper presents MED, the main system of the LMU team for the SIGMORPHON 2016 Shared Task on Morphological Reinflection as well as an extended analysis of how different design choices contribute to the final performance. We model the task of morphological reinflection using neural encoder-decoder models together with an encoding of the input as a single sequence of the morphological tags of the source and target form as well as the sequence of letters of the source form. The Shared Task consists of three subtasks, three different tracks and covers 10 different languages to encourage the use of language-independent approaches. MED was the system with the overall best performance, demonstrating our method generalizes well for the low-resource setting of the SIGMORPHON 2016 Shared Task.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"MED: The LMU System for the SIGMORPHON 2016 Shared Task on Morphological Reinflection\",\"authors\":\"Katharina Kann, Hinrich Schütze\",\"doi\":\"10.18653/v1/W16-2010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents MED, the main system of the LMU team for the SIGMORPHON 2016 Shared Task on Morphological Reinflection as well as an extended analysis of how different design choices contribute to the final performance. We model the task of morphological reinflection using neural encoder-decoder models together with an encoding of the input as a single sequence of the morphological tags of the source and target form as well as the sequence of letters of the source form. The Shared Task consists of three subtasks, three different tracks and covers 10 different languages to encourage the use of language-independent approaches. MED was the system with the overall best performance, demonstrating our method generalizes well for the low-resource setting of the SIGMORPHON 2016 Shared Task.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-2010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

本文介绍了LMU团队为SIGMORPHON 2016形态学反射共享任务设计的主要系统MED,并对不同的设计选择如何影响最终性能进行了扩展分析。我们使用神经编码器-解码器模型对形态学反射任务进行建模,并将输入编码为源形式和目标形式的形态学标签的单一序列以及源形式的字母序列。共享任务由三个子任务、三个不同的轨道和涵盖10种不同的语言组成,以鼓励使用与语言无关的方法。MED是整体性能最好的系统,表明我们的方法可以很好地泛化SIGMORPHON 2016共享任务的低资源设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MED: The LMU System for the SIGMORPHON 2016 Shared Task on Morphological Reinflection
This paper presents MED, the main system of the LMU team for the SIGMORPHON 2016 Shared Task on Morphological Reinflection as well as an extended analysis of how different design choices contribute to the final performance. We model the task of morphological reinflection using neural encoder-decoder models together with an encoding of the input as a single sequence of the morphological tags of the source and target form as well as the sequence of letters of the source form. The Shared Task consists of three subtasks, three different tracks and covers 10 different languages to encourage the use of language-independent approaches. MED was the system with the overall best performance, demonstrating our method generalizes well for the low-resource setting of the SIGMORPHON 2016 Shared Task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信