Xiaohua Huang, Qiuhai He, Xiaopeng Hong, Guoying Zhao, M. Pietikäinen
{"title":"基于改进时空局部单基因二元模式的野外情绪识别","authors":"Xiaohua Huang, Qiuhai He, Xiaopeng Hong, Guoying Zhao, M. Pietikäinen","doi":"10.1145/2663204.2666278","DOIUrl":null,"url":null,"abstract":"Local binary pattern from three orthogonal planes (LBP-TOP) has been widely used in emotion recognition in the wild. However, it suffers from illumination and pose changes. This paper mainly focuses on the robustness of LBP-TOP to unconstrained environment. Recent proposed method, spatiotemporal local monogenic binary pattern (STLMBP), was verified to work promisingly in different illumination conditions. Thus this paper proposes an improved spatiotemporal feature descriptor based on STLMBP. The improved descriptor uses not only magnitude and orientation, but also the phase information, which provide complementary information. In detail, the magnitude, orientation and phase images are obtained by using an effective monogenic filter, and multiple feature vectors are finally fused by multiple kernel learning. STLMBP and the proposed method are evaluated in the Acted Facial Expression in the Wild as part of the 2014 Emotion Recognition in the Wild Challenge. They achieve competitive results, with an accuracy gain of 6.35% and 7.65% above the challenge baseline (LBP-TOP) over video.","PeriodicalId":389037,"journal":{"name":"Proceedings of the 16th International Conference on Multimodal Interaction","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild\",\"authors\":\"Xiaohua Huang, Qiuhai He, Xiaopeng Hong, Guoying Zhao, M. Pietikäinen\",\"doi\":\"10.1145/2663204.2666278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local binary pattern from three orthogonal planes (LBP-TOP) has been widely used in emotion recognition in the wild. However, it suffers from illumination and pose changes. This paper mainly focuses on the robustness of LBP-TOP to unconstrained environment. Recent proposed method, spatiotemporal local monogenic binary pattern (STLMBP), was verified to work promisingly in different illumination conditions. Thus this paper proposes an improved spatiotemporal feature descriptor based on STLMBP. The improved descriptor uses not only magnitude and orientation, but also the phase information, which provide complementary information. In detail, the magnitude, orientation and phase images are obtained by using an effective monogenic filter, and multiple feature vectors are finally fused by multiple kernel learning. STLMBP and the proposed method are evaluated in the Acted Facial Expression in the Wild as part of the 2014 Emotion Recognition in the Wild Challenge. They achieve competitive results, with an accuracy gain of 6.35% and 7.65% above the challenge baseline (LBP-TOP) over video.\",\"PeriodicalId\":389037,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663204.2666278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663204.2666278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Spatiotemporal Local Monogenic Binary Pattern for Emotion Recognition in The Wild
Local binary pattern from three orthogonal planes (LBP-TOP) has been widely used in emotion recognition in the wild. However, it suffers from illumination and pose changes. This paper mainly focuses on the robustness of LBP-TOP to unconstrained environment. Recent proposed method, spatiotemporal local monogenic binary pattern (STLMBP), was verified to work promisingly in different illumination conditions. Thus this paper proposes an improved spatiotemporal feature descriptor based on STLMBP. The improved descriptor uses not only magnitude and orientation, but also the phase information, which provide complementary information. In detail, the magnitude, orientation and phase images are obtained by using an effective monogenic filter, and multiple feature vectors are finally fused by multiple kernel learning. STLMBP and the proposed method are evaluated in the Acted Facial Expression in the Wild as part of the 2014 Emotion Recognition in the Wild Challenge. They achieve competitive results, with an accuracy gain of 6.35% and 7.65% above the challenge baseline (LBP-TOP) over video.