分析支持知识可视化和直观检索的大型新闻视频数据库

Hangzai Luo, Jianping Fan, Jing Yang, W. Ribarsky, S. Satoh
{"title":"分析支持知识可视化和直观检索的大型新闻视频数据库","authors":"Hangzai Luo, Jianping Fan, Jing Yang, W. Ribarsky, S. Satoh","doi":"10.1109/VAST.2007.4389003","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed a novel framework to enable more effective investigation of large-scale news video database via knowledge visualization. To relieve users from the burdensome exploration of well-known and uninteresting knowledge of news reports, a novel interestingness measurement for video news reports is presented to enable users to find news stories of interest at first glance and capture the relevant knowledge in large-scale video news databases efficiently. Our framework takes advantage of both automatic semantic video analysis and human intelligence by integrating with visualization techniques on semantic video retrieval systems. Our techniques on intelligent news video analysis and knowledge discovery have the capacity to enable more effective visualization and exploration of large-scale news video collections. In addition, news video visualization and exploration can provide valuable feedback to improve our techniques for intelligent news video analysis and knowledge discovery.","PeriodicalId":227910,"journal":{"name":"2007 IEEE Symposium on Visual Analytics Science and Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Analyzing Large-Scale News Video Databases to Support Knowledge Visualization and Intuitive Retrieval\",\"authors\":\"Hangzai Luo, Jianping Fan, Jing Yang, W. Ribarsky, S. Satoh\",\"doi\":\"10.1109/VAST.2007.4389003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have developed a novel framework to enable more effective investigation of large-scale news video database via knowledge visualization. To relieve users from the burdensome exploration of well-known and uninteresting knowledge of news reports, a novel interestingness measurement for video news reports is presented to enable users to find news stories of interest at first glance and capture the relevant knowledge in large-scale video news databases efficiently. Our framework takes advantage of both automatic semantic video analysis and human intelligence by integrating with visualization techniques on semantic video retrieval systems. Our techniques on intelligent news video analysis and knowledge discovery have the capacity to enable more effective visualization and exploration of large-scale news video collections. In addition, news video visualization and exploration can provide valuable feedback to improve our techniques for intelligent news video analysis and knowledge discovery.\",\"PeriodicalId\":227910,\"journal\":{\"name\":\"2007 IEEE Symposium on Visual Analytics Science and Technology\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2007.4389003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2007.4389003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们开发了一个新的框架,使得通过知识可视化对大规模新闻视频数据库进行更有效的调查。为了减轻用户对新闻报道中已知和无趣知识的繁琐探索,提出了一种新的视频新闻报道兴趣度度量方法,使用户能够第一眼找到感兴趣的新闻故事,并有效地捕获大规模视频新闻数据库中的相关知识。我们的框架结合语义视频检索系统的可视化技术,充分利用了自动语义视频分析和人类智能的优势。我们的智能新闻视频分析和知识发现技术能够更有效地对大规模新闻视频集合进行可视化和探索。此外,新闻视频可视化和探索可以提供有价值的反馈,以改进我们的智能新闻视频分析和知识发现技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Large-Scale News Video Databases to Support Knowledge Visualization and Intuitive Retrieval
In this paper, we have developed a novel framework to enable more effective investigation of large-scale news video database via knowledge visualization. To relieve users from the burdensome exploration of well-known and uninteresting knowledge of news reports, a novel interestingness measurement for video news reports is presented to enable users to find news stories of interest at first glance and capture the relevant knowledge in large-scale video news databases efficiently. Our framework takes advantage of both automatic semantic video analysis and human intelligence by integrating with visualization techniques on semantic video retrieval systems. Our techniques on intelligent news video analysis and knowledge discovery have the capacity to enable more effective visualization and exploration of large-scale news video collections. In addition, news video visualization and exploration can provide valuable feedback to improve our techniques for intelligent news video analysis and knowledge discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信