Banach代数上锥b -度量空间的一些结果

Yanchang Han, Guiling Zhu, Xiaofei Hu
{"title":"Banach代数上锥b -度量空间的一些结果","authors":"Yanchang Han, Guiling Zhu, Xiaofei Hu","doi":"10.1109/ISCEIC51027.2020.00022","DOIUrl":null,"url":null,"abstract":"In this paper, some new fixed point results for a contractive mapping in cone b -metric spaces over Banach algebras are obtained, which extend the condition of $\\rho (\\alpha + \\beta) \\in \\big[0,\\displaystyle\\frac{1}{s}\\big)(s \\ge 1)$ to ρ (α + β )∈[0,1) (ρ (x) is the spectral radius of x ). Moreover, some similar improvements in cone b-metric spaces and b-metric spaces are also obtained, which from $(\\alpha + \\beta) \\in \\big[0,\\displaystyle\\frac{1}{s}\\big)(s \\ge 1)$ to (α + β )∈[0,1). There are some examples that are given to support the results.","PeriodicalId":249521,"journal":{"name":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results in cone b -metric spaces over Banach algebras\",\"authors\":\"Yanchang Han, Guiling Zhu, Xiaofei Hu\",\"doi\":\"10.1109/ISCEIC51027.2020.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, some new fixed point results for a contractive mapping in cone b -metric spaces over Banach algebras are obtained, which extend the condition of $\\\\rho (\\\\alpha + \\\\beta) \\\\in \\\\big[0,\\\\displaystyle\\\\frac{1}{s}\\\\big)(s \\\\ge 1)$ to ρ (α + β )∈[0,1) (ρ (x) is the spectral radius of x ). Moreover, some similar improvements in cone b-metric spaces and b-metric spaces are also obtained, which from $(\\\\alpha + \\\\beta) \\\\in \\\\big[0,\\\\displaystyle\\\\frac{1}{s}\\\\big)(s \\\\ge 1)$ to (α + β )∈[0,1). There are some examples that are given to support the results.\",\"PeriodicalId\":249521,\"journal\":{\"name\":\"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCEIC51027.2020.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC51027.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文得到了Banach代数上锥b -度量空间中压缩映射的一些新的不动点结果,将$\rho (\alpha + \beta) \in \big[0,\displaystyle\frac{1}{s}\big)(s \ge 1)$的条件推广到ρ (α + β)∈[0,1](ρ (x)是x的谱半径)。此外,在锥型b-度量空间和b-度量空间中也得到了一些类似的改进,从$(\alpha + \beta) \in \big[0,\displaystyle\frac{1}{s}\big)(s \ge 1)$到(α + β)∈[0,1]。给出了一些例子来支持结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results in cone b -metric spaces over Banach algebras
In this paper, some new fixed point results for a contractive mapping in cone b -metric spaces over Banach algebras are obtained, which extend the condition of $\rho (\alpha + \beta) \in \big[0,\displaystyle\frac{1}{s}\big)(s \ge 1)$ to ρ (α + β )∈[0,1) (ρ (x) is the spectral radius of x ). Moreover, some similar improvements in cone b-metric spaces and b-metric spaces are also obtained, which from $(\alpha + \beta) \in \big[0,\displaystyle\frac{1}{s}\big)(s \ge 1)$ to (α + β )∈[0,1). There are some examples that are given to support the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信