Santiago Rodrigo, S. Abadal, C. G. Almudever, E. Alarcón
{"title":"可扩展多核量子计算体系结构的短程量子隐形传态建模","authors":"Santiago Rodrigo, S. Abadal, C. G. Almudever, E. Alarcón","doi":"10.1145/3477206.3477461","DOIUrl":null,"url":null,"abstract":"Multi-core quantum computing has been identified as a solution to the scalability problem of quantum computing. However, interconnecting quantum chips is not trivial, as quantum communications have their share of quantum weirdness: quantum decoherence and the no-cloning theorem makes transferring qubits a harsh challenge, where every extra nanosecond counts and retransmission is simply impossible. In this paper, we present our first steps towards thorough modeling of quantum communications for multi-core quantum computers, which may be considered as a middle point between the well-known paradigms of Quantum Internet and Network-on-Chip. In particular, we stress the deep entanglement that exists between latency and error rates in quantum computing, and how this affects the quantum network design for this scenario. Moreover, we show the concomitant trade-off between computation and communication resources for a set of parameters out of state-of-the-art experimental research. The observed behavior lets us foresee the potential of multi-core quantum architectures.","PeriodicalId":303880,"journal":{"name":"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modelling Short-range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures\",\"authors\":\"Santiago Rodrigo, S. Abadal, C. G. Almudever, E. Alarcón\",\"doi\":\"10.1145/3477206.3477461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-core quantum computing has been identified as a solution to the scalability problem of quantum computing. However, interconnecting quantum chips is not trivial, as quantum communications have their share of quantum weirdness: quantum decoherence and the no-cloning theorem makes transferring qubits a harsh challenge, where every extra nanosecond counts and retransmission is simply impossible. In this paper, we present our first steps towards thorough modeling of quantum communications for multi-core quantum computers, which may be considered as a middle point between the well-known paradigms of Quantum Internet and Network-on-Chip. In particular, we stress the deep entanglement that exists between latency and error rates in quantum computing, and how this affects the quantum network design for this scenario. Moreover, we show the concomitant trade-off between computation and communication resources for a set of parameters out of state-of-the-art experimental research. The observed behavior lets us foresee the potential of multi-core quantum architectures.\",\"PeriodicalId\":303880,\"journal\":{\"name\":\"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477206.3477461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477206.3477461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling Short-range Quantum Teleportation for Scalable Multi-Core Quantum Computing Architectures
Multi-core quantum computing has been identified as a solution to the scalability problem of quantum computing. However, interconnecting quantum chips is not trivial, as quantum communications have their share of quantum weirdness: quantum decoherence and the no-cloning theorem makes transferring qubits a harsh challenge, where every extra nanosecond counts and retransmission is simply impossible. In this paper, we present our first steps towards thorough modeling of quantum communications for multi-core quantum computers, which may be considered as a middle point between the well-known paradigms of Quantum Internet and Network-on-Chip. In particular, we stress the deep entanglement that exists between latency and error rates in quantum computing, and how this affects the quantum network design for this scenario. Moreover, we show the concomitant trade-off between computation and communication resources for a set of parameters out of state-of-the-art experimental research. The observed behavior lets us foresee the potential of multi-core quantum architectures.