基于集成学习的嵌入变化率估计

Zhenyu Li, Zongyun Hu, Xiangyang Luo, Bing Lu
{"title":"基于集成学习的嵌入变化率估计","authors":"Zhenyu Li, Zongyun Hu, Xiangyang Luo, Bing Lu","doi":"10.1145/2482513.2482528","DOIUrl":null,"url":null,"abstract":"In order to achieve higher estimation accuracy of the embedding change rate of a stego object, an ensemble learning-based estimation method is presented. First of all, a framework of embedding change rate estimation based on estimator ensemble is proposed. Then an algorithm of building the estimator ensemble, the core of the framework, is concretely described. Finally, a pruning method for estimator ensemble is proposed in consideration of both the diversity among the base estimators and accuracy of each of them. The experimental results for three modern steganographic algorithms (nsF5, PQ and PQt) indicate that the proposed method acquired better performance than the existed typical method. Furthermore, the pruned estimator ensemble with less base estimators maintained, even slightly improved the estimation accuracy, compared to the one without purning.","PeriodicalId":243756,"journal":{"name":"Information Hiding and Multimedia Security Workshop","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Embedding change rate estimation based on ensemble learning\",\"authors\":\"Zhenyu Li, Zongyun Hu, Xiangyang Luo, Bing Lu\",\"doi\":\"10.1145/2482513.2482528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to achieve higher estimation accuracy of the embedding change rate of a stego object, an ensemble learning-based estimation method is presented. First of all, a framework of embedding change rate estimation based on estimator ensemble is proposed. Then an algorithm of building the estimator ensemble, the core of the framework, is concretely described. Finally, a pruning method for estimator ensemble is proposed in consideration of both the diversity among the base estimators and accuracy of each of them. The experimental results for three modern steganographic algorithms (nsF5, PQ and PQt) indicate that the proposed method acquired better performance than the existed typical method. Furthermore, the pruned estimator ensemble with less base estimators maintained, even slightly improved the estimation accuracy, compared to the one without purning.\",\"PeriodicalId\":243756,\"journal\":{\"name\":\"Information Hiding and Multimedia Security Workshop\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Hiding and Multimedia Security Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482513.2482528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Hiding and Multimedia Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482513.2482528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了提高隐写目标嵌入变化率的估计精度,提出了一种基于集成学习的隐写目标嵌入变化率估计方法。首先,提出了一种基于估计量集成的嵌入变化率估计框架。然后具体描述了该框架的核心——估计量集合的构建算法。最后,考虑到基估计量之间的多样性和每个基估计量的准确性,提出了一种估计量集合的剪枝方法。对三种现代隐写算法(nsF5、PQ和PQt)的实验结果表明,该方法比现有的典型方法具有更好的性能。此外,与不修剪的估计量相比,保留较少基估计量的修剪估计量集成甚至略微提高了估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding change rate estimation based on ensemble learning
In order to achieve higher estimation accuracy of the embedding change rate of a stego object, an ensemble learning-based estimation method is presented. First of all, a framework of embedding change rate estimation based on estimator ensemble is proposed. Then an algorithm of building the estimator ensemble, the core of the framework, is concretely described. Finally, a pruning method for estimator ensemble is proposed in consideration of both the diversity among the base estimators and accuracy of each of them. The experimental results for three modern steganographic algorithms (nsF5, PQ and PQt) indicate that the proposed method acquired better performance than the existed typical method. Furthermore, the pruned estimator ensemble with less base estimators maintained, even slightly improved the estimation accuracy, compared to the one without purning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信