Benjamin Uhrich, Shirin Lange, Miriam Louise Carnot, M. Schäfer
{"title":"渐进学是一个能通过3d打印识别异常信号的复杂检测系统","authors":"Benjamin Uhrich, Shirin Lange, Miriam Louise Carnot, M. Schäfer","doi":"10.30844/im_23-1_27-31","DOIUrl":null,"url":null,"abstract":"Beim selektiven Laserschmelzen wird Metallpulver schichtweise aufgeschmolzen und mit dem bereits gefertigten Bauteil verschmolzen. Innerhalb dieses Prozesses entstehen vermeidbare fehlerhafte Schichten. Derartige Fehler sind erst durch verschiedene Druck- und Zugfestigkeitsexperimente nach dem Druck feststellbar. Dieses Vorgehen ist kostenintensiv und ineffizient.","PeriodicalId":346026,"journal":{"name":"Industrie 4.0 Management","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Manufacturing – Ein Intelligentes Überwachungssystem zur Erkennung von Anomalien im 3D-Druck\",\"authors\":\"Benjamin Uhrich, Shirin Lange, Miriam Louise Carnot, M. Schäfer\",\"doi\":\"10.30844/im_23-1_27-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beim selektiven Laserschmelzen wird Metallpulver schichtweise aufgeschmolzen und mit dem bereits gefertigten Bauteil verschmolzen. Innerhalb dieses Prozesses entstehen vermeidbare fehlerhafte Schichten. Derartige Fehler sind erst durch verschiedene Druck- und Zugfestigkeitsexperimente nach dem Druck feststellbar. Dieses Vorgehen ist kostenintensiv und ineffizient.\",\"PeriodicalId\":346026,\"journal\":{\"name\":\"Industrie 4.0 Management\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrie 4.0 Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30844/im_23-1_27-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrie 4.0 Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30844/im_23-1_27-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive Manufacturing – Ein Intelligentes Überwachungssystem zur Erkennung von Anomalien im 3D-Druck
Beim selektiven Laserschmelzen wird Metallpulver schichtweise aufgeschmolzen und mit dem bereits gefertigten Bauteil verschmolzen. Innerhalb dieses Prozesses entstehen vermeidbare fehlerhafte Schichten. Derartige Fehler sind erst durch verschiedene Druck- und Zugfestigkeitsexperimente nach dem Druck feststellbar. Dieses Vorgehen ist kostenintensiv und ineffizient.