{"title":"自适应缓存一致性检测迁移共享数据","authors":"A. Cox, R. Fowler","doi":"10.1109/ISCA.1993.698549","DOIUrl":null,"url":null,"abstract":"Parallel programs exhibit a small number of distinct data-sharing patterns. A common data-sharing pattern, migratory access, is characterized by exclusive read and write access by one processor at a time to a shared datum. We describe a family of adaptive cache coherency protocols that dynamically identify migratory shared data in order to reduce the cost of moving them. The protocols use a standard memory model and processor-cache interface. They do not require any compile-time or run-time software support. We describe implementations for bus-based multiprocessors and for shared-memory multiprocessors that use directory-based caches. These implementations are simple and would not significantly increase hardware cost. We use trace- and execution-driven simulation to compare the performance of the adaptive protocols to standard write-invalidate protocols. These simulations indicate that, compared to conventional protocols, the use of the adaptive protocol can almost halve the number of inter-node messages on some applications. Since cache coherency traffic represents a larger part of the total communication as cache size increases, the relative benefit of using the adaptive protocol also increases.","PeriodicalId":410022,"journal":{"name":"Proceedings of the 20th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Adaptive Cache Coherency For Detecting Migratory Shared Data\",\"authors\":\"A. Cox, R. Fowler\",\"doi\":\"10.1109/ISCA.1993.698549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parallel programs exhibit a small number of distinct data-sharing patterns. A common data-sharing pattern, migratory access, is characterized by exclusive read and write access by one processor at a time to a shared datum. We describe a family of adaptive cache coherency protocols that dynamically identify migratory shared data in order to reduce the cost of moving them. The protocols use a standard memory model and processor-cache interface. They do not require any compile-time or run-time software support. We describe implementations for bus-based multiprocessors and for shared-memory multiprocessors that use directory-based caches. These implementations are simple and would not significantly increase hardware cost. We use trace- and execution-driven simulation to compare the performance of the adaptive protocols to standard write-invalidate protocols. These simulations indicate that, compared to conventional protocols, the use of the adaptive protocol can almost halve the number of inter-node messages on some applications. Since cache coherency traffic represents a larger part of the total communication as cache size increases, the relative benefit of using the adaptive protocol also increases.\",\"PeriodicalId\":410022,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCA.1993.698549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCA.1993.698549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Cache Coherency For Detecting Migratory Shared Data
Parallel programs exhibit a small number of distinct data-sharing patterns. A common data-sharing pattern, migratory access, is characterized by exclusive read and write access by one processor at a time to a shared datum. We describe a family of adaptive cache coherency protocols that dynamically identify migratory shared data in order to reduce the cost of moving them. The protocols use a standard memory model and processor-cache interface. They do not require any compile-time or run-time software support. We describe implementations for bus-based multiprocessors and for shared-memory multiprocessors that use directory-based caches. These implementations are simple and would not significantly increase hardware cost. We use trace- and execution-driven simulation to compare the performance of the adaptive protocols to standard write-invalidate protocols. These simulations indicate that, compared to conventional protocols, the use of the adaptive protocol can almost halve the number of inter-node messages on some applications. Since cache coherency traffic represents a larger part of the total communication as cache size increases, the relative benefit of using the adaptive protocol also increases.