由双曲曲线引起的各种无限群的不可分解性

Arata Minamide
{"title":"由双曲曲线引起的各种无限群的不可分解性","authors":"Arata Minamide","doi":"10.14989/DOCTOR.K20158","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question","PeriodicalId":267320,"journal":{"name":"Mathematical journal of Okayama University","volume":"46 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Indecomposability of various profinite groups arising from hyperbolic curves\",\"authors\":\"Arata Minamide\",\"doi\":\"10.14989/DOCTOR.K20158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question\",\"PeriodicalId\":267320,\"journal\":{\"name\":\"Mathematical journal of Okayama University\",\"volume\":\"46 24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical journal of Okayama University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14989/DOCTOR.K20158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical journal of Okayama University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14989/DOCTOR.K20158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文证明了算术域[如Q或Qp的有限扩展域]或代数闭域上的双曲曲线的基本群是不可分解的[即不能分解为非平凡无限群的直接积]。此外,在特征为零的情况下,我们还证明了上述类型曲线的位形空间的基本群是不可分解的。最后,我们在绝对伽罗瓦群Q与Grothendieck-Teichmuller群GT的比较中考虑了不可分解性的话题,并提出了GT是不可分解的吗?我们对这个问题的正面版本给出肯定的答案
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indecomposability of various profinite groups arising from hyperbolic curves
In this paper, we prove that the etale fundamental group of a hyperbolic curve over an arithmetic field [e.g., a finite extension field of Q or Qp] or an algebraically closed field is indecomposable [i.e., cannot be decomposed into the direct product of nontrivial profinite groups]. Moreover, in the case of characteristic zero, we also prove that the etale fundamental group of the configuration space of a curve of the above type is indecomposable. Finally, we consider the topic of indecomposability in the context of the comparison of the absolute Galois group of Q with the Grothendieck-Teichmuller group GT and pose the question: Is GT indecomposable? We give an affirmative answer to a pro-l version of this question
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信