一种利用临时干膜抗蚀剂进行晶圆模拟和选择性加工的新型集成方案

Alexandre La Grappe, Evert Visker, A. Redolfi, Lan Peng, Karthik Muga, David Huls, S. Vanhaelemeersch, A. Lauwers, J. Ackaert
{"title":"一种利用临时干膜抗蚀剂进行晶圆模拟和选择性加工的新型集成方案","authors":"Alexandre La Grappe, Evert Visker, A. Redolfi, Lan Peng, Karthik Muga, David Huls, S. Vanhaelemeersch, A. Lauwers, J. Ackaert","doi":"10.1109/ECTC32696.2021.00136","DOIUrl":null,"url":null,"abstract":"Patterning on Si with high aspect ratio trenches by spin-coating of photoresist faces significant challenges. The desire to maintain a good thickness uniformity of resist on wafer surface, to minimize any residue inside deep trenches, as well as enabling low cost of ownership has led to new process techniques. Wafer level lamination using dry film resist (DFR) has emerged as a favorable option for such applications. In this paper, a unique application of temporary DFR to overcome deep Si trenches will be presented. The integration scheme offers novel possibilities for wafer singulation in addition to resolving the issues with conventional spin-coating. An example of this approach will be presented in detail. This unique integration flow can lead to new applications that would otherwise not be feasible in technological areas such as sensor, microfluidics and MEMS.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel integration scheme for wafer singulation and selective processing using temporary dry film resist\",\"authors\":\"Alexandre La Grappe, Evert Visker, A. Redolfi, Lan Peng, Karthik Muga, David Huls, S. Vanhaelemeersch, A. Lauwers, J. Ackaert\",\"doi\":\"10.1109/ECTC32696.2021.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patterning on Si with high aspect ratio trenches by spin-coating of photoresist faces significant challenges. The desire to maintain a good thickness uniformity of resist on wafer surface, to minimize any residue inside deep trenches, as well as enabling low cost of ownership has led to new process techniques. Wafer level lamination using dry film resist (DFR) has emerged as a favorable option for such applications. In this paper, a unique application of temporary DFR to overcome deep Si trenches will be presented. The integration scheme offers novel possibilities for wafer singulation in addition to resolving the issues with conventional spin-coating. An example of this approach will be presented in detail. This unique integration flow can lead to new applications that would otherwise not be feasible in technological areas such as sensor, microfluidics and MEMS.\",\"PeriodicalId\":351817,\"journal\":{\"name\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC32696.2021.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用光刻胶的自旋涂覆技术在具有高纵横比沟槽的硅上进行图像化是一个重大的挑战。为了在晶圆表面保持良好的抗蚀剂厚度均匀性,最大限度地减少深沟槽内的残留物,以及实现低拥有成本,导致了新的工艺技术。使用干膜抗蚀剂(DFR)的晶圆级层压已成为此类应用的有利选择。本文将介绍临时DFR在克服深硅沟槽中的独特应用。该集成方案除了解决传统旋转镀膜的问题外,还为晶圆模拟提供了新的可能性。将详细介绍这种方法的一个示例。这种独特的集成流程可以带来新的应用,否则在传感器,微流体和MEMS等技术领域是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel integration scheme for wafer singulation and selective processing using temporary dry film resist
Patterning on Si with high aspect ratio trenches by spin-coating of photoresist faces significant challenges. The desire to maintain a good thickness uniformity of resist on wafer surface, to minimize any residue inside deep trenches, as well as enabling low cost of ownership has led to new process techniques. Wafer level lamination using dry film resist (DFR) has emerged as a favorable option for such applications. In this paper, a unique application of temporary DFR to overcome deep Si trenches will be presented. The integration scheme offers novel possibilities for wafer singulation in addition to resolving the issues with conventional spin-coating. An example of this approach will be presented in detail. This unique integration flow can lead to new applications that would otherwise not be feasible in technological areas such as sensor, microfluidics and MEMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信