一个新的多元分布及其性质

Prem Chandra Consul
{"title":"一个新的多元分布及其性质","authors":"Prem Chandra Consul","doi":"10.3406/barb.1965.65284","DOIUrl":null,"url":null,"abstract":"We define a new statistic U as a difference of two different variates which are both distributed in the form of Bessel functions of purely imaginary argument as obtained by Bhattacharya (1946). Then the principle of Characteristic functions and the method of operational calculus has been utilised to determine the probability distribution and sampling distribution of U. Though the distributions are some-what complex, their moments and cumulants indicate that they are symmetrical and leptokurtic in form and that they approximate to the normal distribution when the sample sizes are large.","PeriodicalId":296277,"journal":{"name":"Bulletin de la Classe des sciences","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new multivariate distribution and its properties\",\"authors\":\"Prem Chandra Consul\",\"doi\":\"10.3406/barb.1965.65284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a new statistic U as a difference of two different variates which are both distributed in the form of Bessel functions of purely imaginary argument as obtained by Bhattacharya (1946). Then the principle of Characteristic functions and the method of operational calculus has been utilised to determine the probability distribution and sampling distribution of U. Though the distributions are some-what complex, their moments and cumulants indicate that they are symmetrical and leptokurtic in form and that they approximate to the normal distribution when the sample sizes are large.\",\"PeriodicalId\":296277,\"journal\":{\"name\":\"Bulletin de la Classe des sciences\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin de la Classe des sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3406/barb.1965.65284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de la Classe des sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3406/barb.1965.65284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将一个新的统计量U定义为两个不同变量的差值,这两个变量都以Bhattacharya(1946)得到的纯虚参数贝塞尔函数的形式分布。然后利用特征函数原理和运算演算的方法确定了u的概率分布和抽样分布,尽管分布有些复杂,但它们的矩量和累积量表明它们在形式上是对称的和细峰的,当样本量较大时,它们近似于正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new multivariate distribution and its properties
We define a new statistic U as a difference of two different variates which are both distributed in the form of Bessel functions of purely imaginary argument as obtained by Bhattacharya (1946). Then the principle of Characteristic functions and the method of operational calculus has been utilised to determine the probability distribution and sampling distribution of U. Though the distributions are some-what complex, their moments and cumulants indicate that they are symmetrical and leptokurtic in form and that they approximate to the normal distribution when the sample sizes are large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信