{"title":"求解多项式系统的多重结构计算","authors":"Barry H. Dayton, Zhonggang Zeng","doi":"10.1145/1073884.1073902","DOIUrl":null,"url":null,"abstract":"This paper presents algorithms for computing the multiplicity structure of a zero to a polynomial system. The zero can be exact or approximate with the system being intrinsic or empirical. As an application, the dual space theory and methodology are utilized to analyze deflation methods in solving polynomial systems, to establish tighter deflation bound, and to derive special case algorithms.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":"{\"title\":\"Computing the multiplicity structure in solving polynomial systems\",\"authors\":\"Barry H. Dayton, Zhonggang Zeng\",\"doi\":\"10.1145/1073884.1073902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents algorithms for computing the multiplicity structure of a zero to a polynomial system. The zero can be exact or approximate with the system being intrinsic or empirical. As an application, the dual space theory and methodology are utilized to analyze deflation methods in solving polynomial systems, to establish tighter deflation bound, and to derive special case algorithms.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"143\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computing the multiplicity structure in solving polynomial systems
This paper presents algorithms for computing the multiplicity structure of a zero to a polynomial system. The zero can be exact or approximate with the system being intrinsic or empirical. As an application, the dual space theory and methodology are utilized to analyze deflation methods in solving polynomial systems, to establish tighter deflation bound, and to derive special case algorithms.