一种评估和减轻并行文件系统上应用程序内部I/O性能可变性的方法

E. C. Inacio, M. Dantas
{"title":"一种评估和减轻并行文件系统上应用程序内部I/O性能可变性的方法","authors":"E. C. Inacio, M. Dantas","doi":"10.5753/wscad_estendido.2019.8709","DOIUrl":null,"url":null,"abstract":"To meet ever increasing capacity and performance requirements of emerging data-intensive applications, highly distributed and multilayered back-end storage systems have been employed in large-scale high performance computing (HPC) environments. A main component of these storage infrastructures is the parallel file system (PFS), a especially designed file system for absorbing bulk data transfers from applications with thousands of concurrent processes. Load distribution on PFS data servers compose a major source of intra-application input/output (I/O) performance variability. Albeit mitigating variability is desirable, as it is known to harm application-perceived performance, understanding and dealing with I/O performance variability in such complex environments remains a challenging task. In this research, a differentiated approach for evaluating and mitigating intra-application I/O performance variability over PFSs is proposed. More specifically, from the evaluation perspective, a comprehensive approach combining complementary methods is proposed. An analytical model proposal, named DTSMaxLoad, provides estimates for the maximum load in a PFS data server. To complement DTSMaxLoad, modeling conditions and mechanisms hard to represent analytically, the Parallel I/O and Storage System (PIOSS) simulation model was proposed. Finally, for experimental evaluation over real environments, a flexible and distributed I/O performance evaluation tool, coined as IOR-Extended (IORE), was proposed. Furthermore, a high-level file distribution approach for PFSs, called N-N Round-Robin (N2R2), was proposed focusing on mitigating I/O performance variability for distributed applications where each process accesses an individual and independent file. An extensive experimental effort, including measurements on real environments, was conducted in this research work for evaluating each of the proposed approaches. In summary, this evaluation indicated both DTSMaxLoad and PIOSS modeling proposals can represent load distribution behavior on PFSs with significant fidelity. Moreover, results demonstrated N2R2 successfully reduced intra-application I/O performance variability for 270 distinct experimental scenarios, which, ultimately, translated into overall application I/O performance Improvements.","PeriodicalId":280012,"journal":{"name":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach for Evaluating and Mitigating Intra-Application I/O Performance Variability Over Parallel File Systems\",\"authors\":\"E. C. Inacio, M. Dantas\",\"doi\":\"10.5753/wscad_estendido.2019.8709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet ever increasing capacity and performance requirements of emerging data-intensive applications, highly distributed and multilayered back-end storage systems have been employed in large-scale high performance computing (HPC) environments. A main component of these storage infrastructures is the parallel file system (PFS), a especially designed file system for absorbing bulk data transfers from applications with thousands of concurrent processes. Load distribution on PFS data servers compose a major source of intra-application input/output (I/O) performance variability. Albeit mitigating variability is desirable, as it is known to harm application-perceived performance, understanding and dealing with I/O performance variability in such complex environments remains a challenging task. In this research, a differentiated approach for evaluating and mitigating intra-application I/O performance variability over PFSs is proposed. More specifically, from the evaluation perspective, a comprehensive approach combining complementary methods is proposed. An analytical model proposal, named DTSMaxLoad, provides estimates for the maximum load in a PFS data server. To complement DTSMaxLoad, modeling conditions and mechanisms hard to represent analytically, the Parallel I/O and Storage System (PIOSS) simulation model was proposed. Finally, for experimental evaluation over real environments, a flexible and distributed I/O performance evaluation tool, coined as IOR-Extended (IORE), was proposed. Furthermore, a high-level file distribution approach for PFSs, called N-N Round-Robin (N2R2), was proposed focusing on mitigating I/O performance variability for distributed applications where each process accesses an individual and independent file. An extensive experimental effort, including measurements on real environments, was conducted in this research work for evaluating each of the proposed approaches. In summary, this evaluation indicated both DTSMaxLoad and PIOSS modeling proposals can represent load distribution behavior on PFSs with significant fidelity. Moreover, results demonstrated N2R2 successfully reduced intra-application I/O performance variability for 270 distinct experimental scenarios, which, ultimately, translated into overall application I/O performance Improvements.\",\"PeriodicalId\":280012,\"journal\":{\"name\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad_estendido.2019.8709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad_estendido.2019.8709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为满足新兴数据密集型应用日益增长的容量和性能需求,大规模高性能计算(HPC)环境中采用了高度分布式、多层次的后端存储系统。这些存储基础设施的一个主要组件是并行文件系统(PFS),这是一种专门设计的文件系统,用于吸收来自具有数千个并发进程的应用程序的批量数据传输。PFS数据服务器上的负载分布构成了应用程序内部输入/输出(I/O)性能可变性的主要来源。虽然减少可变性是可取的,因为它会损害应用程序感知的性能,但在如此复杂的环境中理解和处理I/O性能可变性仍然是一项具有挑战性的任务。在这项研究中,提出了一种评估和减轻pfs上应用程序内部I/O性能变化的差异化方法。更具体地说,从评价的角度,提出了一种互补方法相结合的综合方法。一个名为DTSMaxLoad的分析模型建议提供了PFS数据服务器中最大负载的估计。为了弥补DTSMaxLoad建模条件和机制难以解析表达的缺陷,提出了PIOSS (Parallel I/O and Storage System)仿真模型。最后,为了在真实环境下进行实验评估,提出了一种灵活的分布式I/O性能评估工具,称为IORE - extended (IORE)。此外,还提出了一种用于pfs的高级文件分发方法,称为N-N轮询(N2R2),该方法的重点是减轻分布式应用程序的I/O性能可变性,其中每个进程访问一个独立的文件。在这项研究工作中进行了广泛的实验工作,包括对真实环境的测量,以评估每种提出的方法。综上所述,该评估表明,DTSMaxLoad和PIOSS建模方案都可以非常逼真地表示pfs上的负载分布行为。此外,结果表明N2R2在270个不同的实验场景中成功地降低了应用程序内部I/O性能的可变性,这最终转化为整体应用程序I/O性能的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach for Evaluating and Mitigating Intra-Application I/O Performance Variability Over Parallel File Systems
To meet ever increasing capacity and performance requirements of emerging data-intensive applications, highly distributed and multilayered back-end storage systems have been employed in large-scale high performance computing (HPC) environments. A main component of these storage infrastructures is the parallel file system (PFS), a especially designed file system for absorbing bulk data transfers from applications with thousands of concurrent processes. Load distribution on PFS data servers compose a major source of intra-application input/output (I/O) performance variability. Albeit mitigating variability is desirable, as it is known to harm application-perceived performance, understanding and dealing with I/O performance variability in such complex environments remains a challenging task. In this research, a differentiated approach for evaluating and mitigating intra-application I/O performance variability over PFSs is proposed. More specifically, from the evaluation perspective, a comprehensive approach combining complementary methods is proposed. An analytical model proposal, named DTSMaxLoad, provides estimates for the maximum load in a PFS data server. To complement DTSMaxLoad, modeling conditions and mechanisms hard to represent analytically, the Parallel I/O and Storage System (PIOSS) simulation model was proposed. Finally, for experimental evaluation over real environments, a flexible and distributed I/O performance evaluation tool, coined as IOR-Extended (IORE), was proposed. Furthermore, a high-level file distribution approach for PFSs, called N-N Round-Robin (N2R2), was proposed focusing on mitigating I/O performance variability for distributed applications where each process accesses an individual and independent file. An extensive experimental effort, including measurements on real environments, was conducted in this research work for evaluating each of the proposed approaches. In summary, this evaluation indicated both DTSMaxLoad and PIOSS modeling proposals can represent load distribution behavior on PFSs with significant fidelity. Moreover, results demonstrated N2R2 successfully reduced intra-application I/O performance variability for 270 distinct experimental scenarios, which, ultimately, translated into overall application I/O performance Improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信