结合矢量量化使用SFS选择特征

J. Schenk, G. Rigoll
{"title":"结合矢量量化使用SFS选择特征","authors":"J. Schenk, G. Rigoll","doi":"10.1109/ICFHR.2010.80","DOIUrl":null,"url":null,"abstract":"When discrete Hidden-Markov-Models (HMMs)-based recognition is performed, vector quantization (VQ) is used to transform continuous observations to sequences of discrete symbols. After VQ, the quantization error is not spread equally among the features. This impairs the feature significance, which is important when features are selected, e. g. by applying the Sequential Forward Selection (SFS). In this paper, we introduce a novel vector quantization (VQ) scheme for distributing the quantization error equally among the quantized dimensions of a feature vector. Afterwards, the proposed VQ scheme is used to apply the SFS on the features in on-line handwritten whiteboard note recognition based on discrete HMMs. In an experimental section, we show that the novel VQ scheme derives feature sets of almost half the size of the feature sets gained when standard VQ is used for quantization, while the performance stays the same.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selecting Features Using the SFS in Conjunction with Vector Quantization\",\"authors\":\"J. Schenk, G. Rigoll\",\"doi\":\"10.1109/ICFHR.2010.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When discrete Hidden-Markov-Models (HMMs)-based recognition is performed, vector quantization (VQ) is used to transform continuous observations to sequences of discrete symbols. After VQ, the quantization error is not spread equally among the features. This impairs the feature significance, which is important when features are selected, e. g. by applying the Sequential Forward Selection (SFS). In this paper, we introduce a novel vector quantization (VQ) scheme for distributing the quantization error equally among the quantized dimensions of a feature vector. Afterwards, the proposed VQ scheme is used to apply the SFS on the features in on-line handwritten whiteboard note recognition based on discrete HMMs. In an experimental section, we show that the novel VQ scheme derives feature sets of almost half the size of the feature sets gained when standard VQ is used for quantization, while the performance stays the same.\",\"PeriodicalId\":335044,\"journal\":{\"name\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2010.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于离散隐马尔可夫模型(hmm)的识别中,使用向量量化(VQ)将连续观测值转换为离散符号序列。经过VQ后,量化误差在特征间的分布不均匀。这削弱了特征的重要性,这在选择特征时很重要,例如通过应用顺序前向选择(SFS)。在本文中,我们提出了一种新的矢量量化(VQ)方案,用于将量化误差均匀地分布在特征向量的量化维度上。然后,将所提出的VQ方案应用于基于离散hmm的在线手写白板笔记识别中。在实验部分,我们证明了新的VQ方案获得的特征集几乎是使用标准VQ进行量化时所获得的特征集的一半大小,而性能保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting Features Using the SFS in Conjunction with Vector Quantization
When discrete Hidden-Markov-Models (HMMs)-based recognition is performed, vector quantization (VQ) is used to transform continuous observations to sequences of discrete symbols. After VQ, the quantization error is not spread equally among the features. This impairs the feature significance, which is important when features are selected, e. g. by applying the Sequential Forward Selection (SFS). In this paper, we introduce a novel vector quantization (VQ) scheme for distributing the quantization error equally among the quantized dimensions of a feature vector. Afterwards, the proposed VQ scheme is used to apply the SFS on the features in on-line handwritten whiteboard note recognition based on discrete HMMs. In an experimental section, we show that the novel VQ scheme derives feature sets of almost half the size of the feature sets gained when standard VQ is used for quantization, while the performance stays the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信