不完全维护下可修系统的参数估计

Pingjian Yu, J. Song, C. R. Cassady
{"title":"不完全维护下可修系统的参数估计","authors":"Pingjian Yu, J. Song, C. R. Cassady","doi":"10.1109/RAMS.2008.4925834","DOIUrl":null,"url":null,"abstract":"Estimation of reliability and maintainability parameters is essential in modeling repairable systems and determining maintenance policies. However, because of the aging of repairable systems under imperfect maintenance, failure times are neither identically nor independently distributed, which makes parameter estimation difficult. In this paper, we apply Bayesian methods for estimation of reliability and maintainability parameters based on historical reliability and maintainability (RAM) data. We assume the first failure of the repairable system follows a Weibull probability distribution. The repairable system experiences Kijima Type I imperfect corrective maintenance and Kijima Type I imperfect preventive maintenance. Using a Bayesian perspective, we estimate four parameters for this repairable system: the shape parameter of the Weibull probability distribution (beta), the scale parameter of the Weibull distribution (eta), the imperfect maintenance factor for corrective maintenance (alphar) and the imperfect maintenance factor for preventive maintenance (alphap). The proposed method is illustrated with simulated RAM data.","PeriodicalId":143940,"journal":{"name":"2008 Annual Reliability and Maintainability Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Parameter estimation for a repairable system under imperfect maintenance\",\"authors\":\"Pingjian Yu, J. Song, C. R. Cassady\",\"doi\":\"10.1109/RAMS.2008.4925834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of reliability and maintainability parameters is essential in modeling repairable systems and determining maintenance policies. However, because of the aging of repairable systems under imperfect maintenance, failure times are neither identically nor independently distributed, which makes parameter estimation difficult. In this paper, we apply Bayesian methods for estimation of reliability and maintainability parameters based on historical reliability and maintainability (RAM) data. We assume the first failure of the repairable system follows a Weibull probability distribution. The repairable system experiences Kijima Type I imperfect corrective maintenance and Kijima Type I imperfect preventive maintenance. Using a Bayesian perspective, we estimate four parameters for this repairable system: the shape parameter of the Weibull probability distribution (beta), the scale parameter of the Weibull distribution (eta), the imperfect maintenance factor for corrective maintenance (alphar) and the imperfect maintenance factor for preventive maintenance (alphap). The proposed method is illustrated with simulated RAM data.\",\"PeriodicalId\":143940,\"journal\":{\"name\":\"2008 Annual Reliability and Maintainability Symposium\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2008.4925834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2008.4925834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

可靠性和可维护性参数的估计是建模可修复系统和确定维护策略的关键。然而,由于可修系统在不完全维护下的老化,故障时间既不相同也不独立分布,这给参数估计带来了困难。本文将贝叶斯方法应用于基于历史可靠性和可维护性数据的可靠性和可维护性参数估计。假设可修系统的第一次故障服从威布尔概率分布。可修系统经历木岛I型不完全纠正性维修和木岛I型不完全预防性维修。利用贝叶斯的观点,我们估计了这个可修系统的四个参数:威布尔概率分布的形状参数(beta)、威布尔分布的尺度参数(eta)、纠正性维修的不完善维修因子(alpha)和预防性维修的不完善维修因子(alpha)。最后用RAM数据进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for a repairable system under imperfect maintenance
Estimation of reliability and maintainability parameters is essential in modeling repairable systems and determining maintenance policies. However, because of the aging of repairable systems under imperfect maintenance, failure times are neither identically nor independently distributed, which makes parameter estimation difficult. In this paper, we apply Bayesian methods for estimation of reliability and maintainability parameters based on historical reliability and maintainability (RAM) data. We assume the first failure of the repairable system follows a Weibull probability distribution. The repairable system experiences Kijima Type I imperfect corrective maintenance and Kijima Type I imperfect preventive maintenance. Using a Bayesian perspective, we estimate four parameters for this repairable system: the shape parameter of the Weibull probability distribution (beta), the scale parameter of the Weibull distribution (eta), the imperfect maintenance factor for corrective maintenance (alphar) and the imperfect maintenance factor for preventive maintenance (alphap). The proposed method is illustrated with simulated RAM data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信