{"title":"基于强化学习的车辆边缘计算网络动态感知任务卸载","authors":"Lingling Wang, X. Zhu, Nianxin Li, Yumei Li, Shuyue Ma, Linbo Zhai","doi":"10.1109/MSN57253.2022.00053","DOIUrl":null,"url":null,"abstract":"The rapid development of edge computing has an impact on the Internet of Vehicles (IoV). However, the high-speed mobility of vehicles makes the task offloading delay unstable and unreliable. Hence, this paper studies the task offloading problem to provide stable computing, communication and storage services for user vehicles in vehicle networks. The offloading problem is formulated to minimize cost consumption under the maximum delay constraint by jointly considering the positions, speeds and computation resources of vehicles. Due to the complexity of the problem, we propose the vehicle deep Q-network (V-DQN) algorithm. In V-DQN algorithm, we firstly propose a vehicle adaptive feedback (VAF) algorithm to obtain the priority setting of processing tasks for service vehicles. Then, the V-DQN algorithm is implemented based on the result of VAF to realize task offloading strategy. Specially, the interruption problem caused by the movement of the vehicle is formulated as a return function as part of evaluating the task offloading strategy. The simulation results show that our proposed scheme significantly reduces cost consumption and improves Quality of Service (QoS).","PeriodicalId":114459,"journal":{"name":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Vehicle Aware Task Offloading Based on Reinforcement Learning in a Vehicular Edge Computing Network\",\"authors\":\"Lingling Wang, X. Zhu, Nianxin Li, Yumei Li, Shuyue Ma, Linbo Zhai\",\"doi\":\"10.1109/MSN57253.2022.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of edge computing has an impact on the Internet of Vehicles (IoV). However, the high-speed mobility of vehicles makes the task offloading delay unstable and unreliable. Hence, this paper studies the task offloading problem to provide stable computing, communication and storage services for user vehicles in vehicle networks. The offloading problem is formulated to minimize cost consumption under the maximum delay constraint by jointly considering the positions, speeds and computation resources of vehicles. Due to the complexity of the problem, we propose the vehicle deep Q-network (V-DQN) algorithm. In V-DQN algorithm, we firstly propose a vehicle adaptive feedback (VAF) algorithm to obtain the priority setting of processing tasks for service vehicles. Then, the V-DQN algorithm is implemented based on the result of VAF to realize task offloading strategy. Specially, the interruption problem caused by the movement of the vehicle is formulated as a return function as part of evaluating the task offloading strategy. The simulation results show that our proposed scheme significantly reduces cost consumption and improves Quality of Service (QoS).\",\"PeriodicalId\":114459,\"journal\":{\"name\":\"2022 18th International Conference on Mobility, Sensing and Networking (MSN)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Mobility, Sensing and Networking (MSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSN57253.2022.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN57253.2022.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Vehicle Aware Task Offloading Based on Reinforcement Learning in a Vehicular Edge Computing Network
The rapid development of edge computing has an impact on the Internet of Vehicles (IoV). However, the high-speed mobility of vehicles makes the task offloading delay unstable and unreliable. Hence, this paper studies the task offloading problem to provide stable computing, communication and storage services for user vehicles in vehicle networks. The offloading problem is formulated to minimize cost consumption under the maximum delay constraint by jointly considering the positions, speeds and computation resources of vehicles. Due to the complexity of the problem, we propose the vehicle deep Q-network (V-DQN) algorithm. In V-DQN algorithm, we firstly propose a vehicle adaptive feedback (VAF) algorithm to obtain the priority setting of processing tasks for service vehicles. Then, the V-DQN algorithm is implemented based on the result of VAF to realize task offloading strategy. Specially, the interruption problem caused by the movement of the vehicle is formulated as a return function as part of evaluating the task offloading strategy. The simulation results show that our proposed scheme significantly reduces cost consumption and improves Quality of Service (QoS).