应用组合理论进行列车到站时间预测校正

Takaaki Yamada, Tatsuhiro Sato
{"title":"应用组合理论进行列车到站时间预测校正","authors":"Takaaki Yamada, Tatsuhiro Sato","doi":"10.1109/IWCIA.2016.7805740","DOIUrl":null,"url":null,"abstract":"The application of portfolio theory to the prediction of train arrival times is shown to improve prediction accuracy. The \"portfolio\" comprises two correction methods based on a Wiener process: one uses history data for the current day and the other uses data for previous days. The error between the predicted and actual time is assumed to have a normal distribution. Portfolio theory is used to determine the optimal application of the two methods to the correction process. Simulation using actual data showed that the average error in the predicted arrival time was reduced to 4 s from 12 s when the timetable was dense. This error reduction will, for example, improve the efficiency of regenerative braking systems, in which the kinetic energy of an arriving (braking) train is electrically transmitted to a departing (accelerating) train.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applying portfolio theory to prediction correction of train arrival times\",\"authors\":\"Takaaki Yamada, Tatsuhiro Sato\",\"doi\":\"10.1109/IWCIA.2016.7805740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of portfolio theory to the prediction of train arrival times is shown to improve prediction accuracy. The \\\"portfolio\\\" comprises two correction methods based on a Wiener process: one uses history data for the current day and the other uses data for previous days. The error between the predicted and actual time is assumed to have a normal distribution. Portfolio theory is used to determine the optimal application of the two methods to the correction process. Simulation using actual data showed that the average error in the predicted arrival time was reduced to 4 s from 12 s when the timetable was dense. This error reduction will, for example, improve the efficiency of regenerative braking systems, in which the kinetic energy of an arriving (braking) train is electrically transmitted to a departing (accelerating) train.\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将组合理论应用于列车到站时间预测,提高了预测精度。“组合”包括基于维纳过程的两种校正方法:一种使用当天的历史数据,另一种使用前几天的数据。假设预测时间与实际时间之间的误差呈正态分布。组合理论用于确定这两种方法在修正过程中的最佳应用。利用实际数据进行的仿真结果表明,当列车时刻表较密集时,预测到达时间的平均误差从12秒降低到4秒。例如,这种误差的减少将提高再生制动系统的效率,在再生制动系统中,到达(制动)列车的动能被电传递给离开(加速)的列车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying portfolio theory to prediction correction of train arrival times
The application of portfolio theory to the prediction of train arrival times is shown to improve prediction accuracy. The "portfolio" comprises two correction methods based on a Wiener process: one uses history data for the current day and the other uses data for previous days. The error between the predicted and actual time is assumed to have a normal distribution. Portfolio theory is used to determine the optimal application of the two methods to the correction process. Simulation using actual data showed that the average error in the predicted arrival time was reduced to 4 s from 12 s when the timetable was dense. This error reduction will, for example, improve the efficiency of regenerative braking systems, in which the kinetic energy of an arriving (braking) train is electrically transmitted to a departing (accelerating) train.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信