利用实值遗传算法进化分类规则集

A. Corcoran, S. Sen
{"title":"利用实值遗传算法进化分类规则集","authors":"A. Corcoran, S. Sen","doi":"10.1109/ICEC.1994.350030","DOIUrl":null,"url":null,"abstract":"In this paper, we use a genetic algorithm to evolve a set of classification rules with real-valued attributes. We show how real-valued attribute ranges could be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classification as an optimization problem, and evolve rule sets that maximize the number of correct classifications of input instances. We use a variant of the Pitt approach to genetic-based machine learning system with a novel conflict resolution mechanism between competing rules within the same rule set. Experimental results demonstrate the effectiveness of our proposed approach on a benchmark wine classifier system.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":"{\"title\":\"Using real-valued genetic algorithms to evolve rule sets for classification\",\"authors\":\"A. Corcoran, S. Sen\",\"doi\":\"10.1109/ICEC.1994.350030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use a genetic algorithm to evolve a set of classification rules with real-valued attributes. We show how real-valued attribute ranges could be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classification as an optimization problem, and evolve rule sets that maximize the number of correct classifications of input instances. We use a variant of the Pitt approach to genetic-based machine learning system with a novel conflict resolution mechanism between competing rules within the same rule set. Experimental results demonstrate the effectiveness of our proposed approach on a benchmark wine classifier system.<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.350030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170

摘要

在本文中,我们使用遗传算法来进化一组具有实值属性的分类规则。我们展示了如何用实值基因对实值属性范围进行编码,并提出了一种新的表示规则中不关心的统一方法。我们将监督分类视为一个优化问题,并进化规则集,使输入实例的正确分类数量最大化。我们将皮特方法的一种变体用于基于遗传的机器学习系统,该系统具有相同规则集中竞争规则之间的新型冲突解决机制。实验结果证明了我们提出的方法在一个基准葡萄酒分类系统上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using real-valued genetic algorithms to evolve rule sets for classification
In this paper, we use a genetic algorithm to evolve a set of classification rules with real-valued attributes. We show how real-valued attribute ranges could be encoded with real-valued genes and present a new uniform method for representing don't cares in the rules. We view supervised classification as an optimization problem, and evolve rule sets that maximize the number of correct classifications of input instances. We use a variant of the Pitt approach to genetic-based machine learning system with a novel conflict resolution mechanism between competing rules within the same rule set. Experimental results demonstrate the effectiveness of our proposed approach on a benchmark wine classifier system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信