利用强化学习模拟食物和捕食者存在下的同质鱼群

Ravipas Wangananont, Norapat Buppodom, Sanpat Chanthanuraks, Vishnu Kotrajaras
{"title":"利用强化学习模拟食物和捕食者存在下的同质鱼群","authors":"Ravipas Wangananont, Norapat Buppodom, Sanpat Chanthanuraks, Vishnu Kotrajaras","doi":"10.1109/iSAI-NLP56921.2022.9960278","DOIUrl":null,"url":null,"abstract":"We utilized Deep Reinforcement Learning to incor-porate schooling, foraging, and predator avoidance behaviors into a single fish behavior model. We used Proximal Policy Optimization (PPO) with Intrinsic Curiosity Reward (ICR) to make fish agents learn in our Unity Environment. We created an interactive control system on Unity that allows users to visualize and manipulate the simulation using only a mouse and keyboard. We compared our model with three variations: one without schooling reward, one without foraging reward, and one without predator avoidance reward. Our original model (schooling, foraging, and predator avoidance) clearly illustrated the unification of all three behaviors.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of Homogenous Fish Schools in the Presence of Food and Predators using Reinforcement Learning\",\"authors\":\"Ravipas Wangananont, Norapat Buppodom, Sanpat Chanthanuraks, Vishnu Kotrajaras\",\"doi\":\"10.1109/iSAI-NLP56921.2022.9960278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We utilized Deep Reinforcement Learning to incor-porate schooling, foraging, and predator avoidance behaviors into a single fish behavior model. We used Proximal Policy Optimization (PPO) with Intrinsic Curiosity Reward (ICR) to make fish agents learn in our Unity Environment. We created an interactive control system on Unity that allows users to visualize and manipulate the simulation using only a mouse and keyboard. We compared our model with three variations: one without schooling reward, one without foraging reward, and one without predator avoidance reward. Our original model (schooling, foraging, and predator avoidance) clearly illustrated the unification of all three behaviors.\",\"PeriodicalId\":399019,\"journal\":{\"name\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iSAI-NLP56921.2022.9960278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们利用深度强化学习将鱼群、觅食和捕食者躲避行为整合到一个单一的鱼类行为模型中。我们使用带有内在好奇心奖励(ICR)的近端策略优化(PPO)来使鱼代理在Unity环境中学习。我们在Unity上创建了一个交互式控制系统,允许用户仅使用鼠标和键盘就可以可视化和操纵模拟。我们将我们的模型与三种变体进行了比较:一种没有学校奖励,一种没有觅食奖励,还有一种没有捕食者躲避奖励。我们最初的模型(学习、觅食和躲避捕食者)清楚地说明了这三种行为的统一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Homogenous Fish Schools in the Presence of Food and Predators using Reinforcement Learning
We utilized Deep Reinforcement Learning to incor-porate schooling, foraging, and predator avoidance behaviors into a single fish behavior model. We used Proximal Policy Optimization (PPO) with Intrinsic Curiosity Reward (ICR) to make fish agents learn in our Unity Environment. We created an interactive control system on Unity that allows users to visualize and manipulate the simulation using only a mouse and keyboard. We compared our model with three variations: one without schooling reward, one without foraging reward, and one without predator avoidance reward. Our original model (schooling, foraging, and predator avoidance) clearly illustrated the unification of all three behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信