基于spark的聚类算法研究

Kun Lang, Xiaoli Chai
{"title":"基于spark的聚类算法研究","authors":"Kun Lang, Xiaoli Chai","doi":"10.1109/ICCECE58074.2023.10135496","DOIUrl":null,"url":null,"abstract":"With the rapid development of sensors and positioning technology, a huge amount of GPS data generates every day and night. Taking cabs as an example, behind the GPS track information of cabs, there is a large amount of information to be mined, which is crucial for urban governance and consumer behavior analysis. In this paper, we will analyze point data of cab with clustering algorithm, optimize K-means by utilizing the Canopy algorithm for pre-clustering, and parallelize the implementation of the algorithm based on the spark framework. Experiments show that the improved clustering algorithm works well, and the computational efficiency and speedup also improve effectively.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on clustering algorithm based on spark\",\"authors\":\"Kun Lang, Xiaoli Chai\",\"doi\":\"10.1109/ICCECE58074.2023.10135496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of sensors and positioning technology, a huge amount of GPS data generates every day and night. Taking cabs as an example, behind the GPS track information of cabs, there is a large amount of information to be mined, which is crucial for urban governance and consumer behavior analysis. In this paper, we will analyze point data of cab with clustering algorithm, optimize K-means by utilizing the Canopy algorithm for pre-clustering, and parallelize the implementation of the algorithm based on the spark framework. Experiments show that the improved clustering algorithm works well, and the computational efficiency and speedup also improve effectively.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着传感器和定位技术的飞速发展,每天晚上都会产生大量的GPS数据。以出租车为例,在出租车的GPS轨迹信息背后,有大量的信息需要挖掘,这些信息对于城市治理和消费者行为分析至关重要。本文将利用聚类算法对驾驶室点数据进行分析,利用Canopy算法对K-means进行预聚类优化,并基于spark框架对算法进行并行化实现。实验表明,改进后的聚类算法效果良好,计算效率和加速也得到了有效提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on clustering algorithm based on spark
With the rapid development of sensors and positioning technology, a huge amount of GPS data generates every day and night. Taking cabs as an example, behind the GPS track information of cabs, there is a large amount of information to be mined, which is crucial for urban governance and consumer behavior analysis. In this paper, we will analyze point data of cab with clustering algorithm, optimize K-means by utilizing the Canopy algorithm for pre-clustering, and parallelize the implementation of the algorithm based on the spark framework. Experiments show that the improved clustering algorithm works well, and the computational efficiency and speedup also improve effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信