结合核-壳结构和合金化效应的高效乙醇电氧化:核-壳纳米粒子Au@Fepd与亚纳米合金壳的案例

Danye Liu, Qing Zeng, Hui Liu, Chaoquan Hu, Dong Chen, Lin Xu, Jun Yang
{"title":"结合核-壳结构和合金化效应的高效乙醇电氧化:核-壳纳米粒子Au@Fepd与亚纳米合金壳的案例","authors":"Danye Liu, Qing Zeng, Hui Liu, Chaoquan Hu, Dong Chen, Lin Xu, Jun Yang","doi":"10.2139/ssrn.3756486","DOIUrl":null,"url":null,"abstract":"Combining the core-shell construction with an alloying effect is an effective way to optimize the electronic and lattice strain effects generated in core-shell configurations for achieving highly catalytic efficiency for a given electrochemical reaction. To demonstrate this concept, we herein report the use of core-shell Au@FePd nanoparticles with an Au core and a sub-nano FePd alloy shell to promote the electrocatalytic oxidation of ethanol. In these core-shell structures, the Au core modifies the electronic configuration of Pd atoms through differences in electronegativity, while the Fe component in thin shells reduces the lattice expansion of Pd induced by the Au core, both of which endows the Pd shell with an appropriate d-band center, favorable for the electrooxidation of ethanol molecules through C1 pathway. In particular, the as-prepared core-shell Au@FePd nanoparticles at an optimized Fe/Pd ratio of 0.5/1 (Au@FePd-0.5) exhibit a mass activity of 13.3 A mg-1 and a specific activity of 20.2 mA cm-2 for the ethanol electrooxidation in an alkaline medium, which significantly outperform those of a majority of the recent reported Pd-based electrocatalysts. This study highlights the concept of engineering the geometry and surface composition of a nanostructure for designing highly efficient electrocatalysts for a large variety of electrochemical applications.","PeriodicalId":119595,"journal":{"name":"Nanomaterials eJournal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Core-Shell Construction with Alloying Effect for High Efficiency Ethanol Electrooxidation: A Case of Core-Shell Au@Fepd Nanoparticles with Sub-Nano Alloy Shells\",\"authors\":\"Danye Liu, Qing Zeng, Hui Liu, Chaoquan Hu, Dong Chen, Lin Xu, Jun Yang\",\"doi\":\"10.2139/ssrn.3756486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining the core-shell construction with an alloying effect is an effective way to optimize the electronic and lattice strain effects generated in core-shell configurations for achieving highly catalytic efficiency for a given electrochemical reaction. To demonstrate this concept, we herein report the use of core-shell Au@FePd nanoparticles with an Au core and a sub-nano FePd alloy shell to promote the electrocatalytic oxidation of ethanol. In these core-shell structures, the Au core modifies the electronic configuration of Pd atoms through differences in electronegativity, while the Fe component in thin shells reduces the lattice expansion of Pd induced by the Au core, both of which endows the Pd shell with an appropriate d-band center, favorable for the electrooxidation of ethanol molecules through C1 pathway. In particular, the as-prepared core-shell Au@FePd nanoparticles at an optimized Fe/Pd ratio of 0.5/1 (Au@FePd-0.5) exhibit a mass activity of 13.3 A mg-1 and a specific activity of 20.2 mA cm-2 for the ethanol electrooxidation in an alkaline medium, which significantly outperform those of a majority of the recent reported Pd-based electrocatalysts. This study highlights the concept of engineering the geometry and surface composition of a nanostructure for designing highly efficient electrocatalysts for a large variety of electrochemical applications.\",\"PeriodicalId\":119595,\"journal\":{\"name\":\"Nanomaterials eJournal\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3756486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3756486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合核壳结构和合金效应是优化核壳结构中产生的电子和晶格应变效应的有效途径,从而实现对给定电化学反应的高催化效率。为了证明这一概念,我们在此报道了使用具有金核和亚纳米FePd合金壳的核壳Au@FePd纳米颗粒来促进乙醇的电催化氧化。在这些核壳结构中,Au核通过电负性的差异改变了Pd原子的电子构型,而薄壳层中的Fe组分降低了Au核诱导Pd的晶格膨胀,这两者都使Pd壳层具有合适的d带中心,有利于乙醇分子通过C1途径电氧化。特别是,在Fe/Pd比为0.5/1 (Au@FePd-0.5)的优化条件下,制备的核壳Au@FePd纳米颗粒在碱性介质中乙醇电氧化的质量活性为13.3 a mg-1,比活性为20.2 mA cm-2,显著优于最近报道的大多数Pd基电催化剂。这项研究强调了工程纳米结构的几何和表面组成的概念,以设计各种电化学应用的高效电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Core-Shell Construction with Alloying Effect for High Efficiency Ethanol Electrooxidation: A Case of Core-Shell Au@Fepd Nanoparticles with Sub-Nano Alloy Shells
Combining the core-shell construction with an alloying effect is an effective way to optimize the electronic and lattice strain effects generated in core-shell configurations for achieving highly catalytic efficiency for a given electrochemical reaction. To demonstrate this concept, we herein report the use of core-shell Au@FePd nanoparticles with an Au core and a sub-nano FePd alloy shell to promote the electrocatalytic oxidation of ethanol. In these core-shell structures, the Au core modifies the electronic configuration of Pd atoms through differences in electronegativity, while the Fe component in thin shells reduces the lattice expansion of Pd induced by the Au core, both of which endows the Pd shell with an appropriate d-band center, favorable for the electrooxidation of ethanol molecules through C1 pathway. In particular, the as-prepared core-shell Au@FePd nanoparticles at an optimized Fe/Pd ratio of 0.5/1 (Au@FePd-0.5) exhibit a mass activity of 13.3 A mg-1 and a specific activity of 20.2 mA cm-2 for the ethanol electrooxidation in an alkaline medium, which significantly outperform those of a majority of the recent reported Pd-based electrocatalysts. This study highlights the concept of engineering the geometry and surface composition of a nanostructure for designing highly efficient electrocatalysts for a large variety of electrochemical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信