番茄病害分类的生成与转换不变量学习

Getinet Yilma, Kumie Gedamu, Maregu Assefa, Ariyo Oluwasanmi, Zhiguang Qin
{"title":"番茄病害分类的生成与转换不变量学习","authors":"Getinet Yilma, Kumie Gedamu, Maregu Assefa, Ariyo Oluwasanmi, Zhiguang Qin","doi":"10.1109/PRML52754.2021.9520693","DOIUrl":null,"url":null,"abstract":"Deep learning-based plant disease management became a cost-effective way to improved agro-productivity. Advanced train sample generation and augmentation methods enlarge train sample size and improve feature distribution but generation and augmentation introduced sample feature discrepancy due to the generation learning process and augmentation artificial bias. We proposed a generation and geometric transformation invariant feature learning method using Siamese networks with maximum mean discrepancy loss to minimize the feature distribution discrepancies coming from the generated and augmented samples. Through variational GAN and geometric transformation, we created four dataset settings to train the proposed approach. The abundant evaluation results on the PlantVillage tomato dataset demonstrated the effectiveness of the proposed approach for the ResNet50 Siamese networks in learning generation and transformation invariant features for plant disease classification.","PeriodicalId":429603,"journal":{"name":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","volume":"39 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generation and Transformation Invariant Learning for Tomato Disease Classification\",\"authors\":\"Getinet Yilma, Kumie Gedamu, Maregu Assefa, Ariyo Oluwasanmi, Zhiguang Qin\",\"doi\":\"10.1109/PRML52754.2021.9520693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning-based plant disease management became a cost-effective way to improved agro-productivity. Advanced train sample generation and augmentation methods enlarge train sample size and improve feature distribution but generation and augmentation introduced sample feature discrepancy due to the generation learning process and augmentation artificial bias. We proposed a generation and geometric transformation invariant feature learning method using Siamese networks with maximum mean discrepancy loss to minimize the feature distribution discrepancies coming from the generated and augmented samples. Through variational GAN and geometric transformation, we created four dataset settings to train the proposed approach. The abundant evaluation results on the PlantVillage tomato dataset demonstrated the effectiveness of the proposed approach for the ResNet50 Siamese networks in learning generation and transformation invariant features for plant disease classification.\",\"PeriodicalId\":429603,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"volume\":\"39 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRML52754.2021.9520693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRML52754.2021.9520693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于深度学习的植物病害管理成为提高农业生产力的一种经济有效的方法。先进的训练样本生成和增强方法扩大了训练样本的规模,改善了特征分布,但由于生成学习过程和增强的人为偏差,生成和增强引入了样本特征差异。我们提出了一种基于Siamese网络的生成和几何变换不变特征学习方法,该方法具有最大的平均差异损失,以最小化来自生成和增强样本的特征分布差异。通过变分GAN和几何变换,我们创建了四个数据集设置来训练所提出的方法。在PlantVillage番茄数据集上的大量评估结果表明,本文提出的方法在ResNet50 Siamese网络学习生成和转换植物病害分类的不变特征方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation and Transformation Invariant Learning for Tomato Disease Classification
Deep learning-based plant disease management became a cost-effective way to improved agro-productivity. Advanced train sample generation and augmentation methods enlarge train sample size and improve feature distribution but generation and augmentation introduced sample feature discrepancy due to the generation learning process and augmentation artificial bias. We proposed a generation and geometric transformation invariant feature learning method using Siamese networks with maximum mean discrepancy loss to minimize the feature distribution discrepancies coming from the generated and augmented samples. Through variational GAN and geometric transformation, we created four dataset settings to train the proposed approach. The abundant evaluation results on the PlantVillage tomato dataset demonstrated the effectiveness of the proposed approach for the ResNet50 Siamese networks in learning generation and transformation invariant features for plant disease classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信