数值基准问题差分进化、粒子群优化和进化算法的比较研究

J. Vesterstrom, R. Thomsen
{"title":"数值基准问题差分进化、粒子群优化和进化算法的比较研究","authors":"J. Vesterstrom, R. Thomsen","doi":"10.1109/CEC.2004.1331139","DOIUrl":null,"url":null,"abstract":"Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1303","resultStr":"{\"title\":\"A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems\",\"authors\":\"J. Vesterstrom, R. Thomsen\",\"doi\":\"10.1109/CEC.2004.1331139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1303\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1303

摘要

在过去的几十年里,进化算法(EAs)和粒子群优化(PSO)的几个扩展被提出,在选定的基准问题上提供了改进的性能。最近,另一种称为差分进化(DE)的搜索启发式算法在一些实际应用中显示出了优越的性能。在本文中,我们评估了DE, PSO和ea作为数值优化技术的一般适用性的性能。比较是在34个广泛使用的基准问题上进行的。我们的研究结果表明,DE通常优于其他算法。然而,在两个有噪声的函数上,DE和PSO的性能都优于EA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance in several real-world applications. In this paper, we evaluate the performance of DE, PSO, and EAs regarding their general applicability as numerical optimization techniques. The comparison is performed on a suite of 34 widely used benchmark problems. The results from our study show that DE generally outperforms the other algorithms. However, on two noisy functions, both DE and PSO were outperformed by the EA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信