{"title":"双偏振高na消色差透射惠更斯超透镜","authors":"Xiaoluo He, A. Wong","doi":"10.1109/ISAP53582.2022.9998659","DOIUrl":null,"url":null,"abstract":"In this paper, we present the first dual-polarized achromatic metalens made from a Huygens’ metasurface element. Employing a novel Huygens’ architecture with miniaturized size and improved tuning range, we achieve wideband, linear-phased, highly transmissive elements capable of generating a large range true-time-delay. This allows us to construct a dual-polarized achromatic metalens with a large numerical aperture. As a proof of concept, we design a dual-polarized achromatic metalens for which the focal length is maintained at $6.4\\pm 0.15\\lambda_{c}$ across the operation band (K-band, 21.5-26 GHz), where $\\lambda_{c}=12.5$ mm is the wavelength corresponding to the center frequency of 24 GHz. The simulated focusing efficiency is over 65% across the operation bandwidth. The combination of the miniaturized unit cell and increased tuning range allows this dual-polarized achromatic metasurface to have a numerical aperture of 0.64 – which is the highest known among achromatic metalenses in the microwave region. This metasurface shall find attractive applications in broadband imaging and communication at microwave and mm-wave frequencies.","PeriodicalId":137840,"journal":{"name":"2022 International Symposium on Antennas and Propagation (ISAP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-polarized High-NA Achromatic Transmission Huygens’ Metalens\",\"authors\":\"Xiaoluo He, A. Wong\",\"doi\":\"10.1109/ISAP53582.2022.9998659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the first dual-polarized achromatic metalens made from a Huygens’ metasurface element. Employing a novel Huygens’ architecture with miniaturized size and improved tuning range, we achieve wideband, linear-phased, highly transmissive elements capable of generating a large range true-time-delay. This allows us to construct a dual-polarized achromatic metalens with a large numerical aperture. As a proof of concept, we design a dual-polarized achromatic metalens for which the focal length is maintained at $6.4\\\\pm 0.15\\\\lambda_{c}$ across the operation band (K-band, 21.5-26 GHz), where $\\\\lambda_{c}=12.5$ mm is the wavelength corresponding to the center frequency of 24 GHz. The simulated focusing efficiency is over 65% across the operation bandwidth. The combination of the miniaturized unit cell and increased tuning range allows this dual-polarized achromatic metasurface to have a numerical aperture of 0.64 – which is the highest known among achromatic metalenses in the microwave region. This metasurface shall find attractive applications in broadband imaging and communication at microwave and mm-wave frequencies.\",\"PeriodicalId\":137840,\"journal\":{\"name\":\"2022 International Symposium on Antennas and Propagation (ISAP)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Antennas and Propagation (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP53582.2022.9998659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Antennas and Propagation (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP53582.2022.9998659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Dual-polarized High-NA Achromatic Transmission Huygens’ Metalens
In this paper, we present the first dual-polarized achromatic metalens made from a Huygens’ metasurface element. Employing a novel Huygens’ architecture with miniaturized size and improved tuning range, we achieve wideband, linear-phased, highly transmissive elements capable of generating a large range true-time-delay. This allows us to construct a dual-polarized achromatic metalens with a large numerical aperture. As a proof of concept, we design a dual-polarized achromatic metalens for which the focal length is maintained at $6.4\pm 0.15\lambda_{c}$ across the operation band (K-band, 21.5-26 GHz), where $\lambda_{c}=12.5$ mm is the wavelength corresponding to the center frequency of 24 GHz. The simulated focusing efficiency is over 65% across the operation bandwidth. The combination of the miniaturized unit cell and increased tuning range allows this dual-polarized achromatic metasurface to have a numerical aperture of 0.64 – which is the highest known among achromatic metalenses in the microwave region. This metasurface shall find attractive applications in broadband imaging and communication at microwave and mm-wave frequencies.