基于H∞优化和语音产生模型的人工带宽扩展

Deepika Gupta, H. S. Shekhawat
{"title":"基于H∞优化和语音产生模型的人工带宽扩展","authors":"Deepika Gupta, H. S. Shekhawat","doi":"10.1109/RADIOELEK.2019.8733452","DOIUrl":null,"url":null,"abstract":"This work presents a new method for artificial bandwidth extension (ABE) in narrowband telephonic communication. In this regard, we use signal model and H∞ optimization to obtain a synthesis filter for representing the wideband information of a signal. We need to estimate the high-band information in narrowband communication. Hence, we construct a high-band filter which retains the high-band information of the synthesis filter. Signal models may not be the same for different speech signals because of their non-stationary (time-varying) behavior. Hence, a short time processing (framing) is applied to speech signals for converting them into the stationary frames. Signal models of stationary frames may be different. As a result, their high-band filters will vary. So, a Gaussian mixture modelling (GMM) codebook approach is used to store the high-band filters information along with their narrowband information (narrowband feature). This approach is also used to estimate the high-band filter information for a given narrowband feature of the signal. Performance analysis is done for the two types of narrowband information representations.","PeriodicalId":336454,"journal":{"name":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Artificial Bandwidth Extension Using H∞ Optimization and Speech Production Model\",\"authors\":\"Deepika Gupta, H. S. Shekhawat\",\"doi\":\"10.1109/RADIOELEK.2019.8733452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new method for artificial bandwidth extension (ABE) in narrowband telephonic communication. In this regard, we use signal model and H∞ optimization to obtain a synthesis filter for representing the wideband information of a signal. We need to estimate the high-band information in narrowband communication. Hence, we construct a high-band filter which retains the high-band information of the synthesis filter. Signal models may not be the same for different speech signals because of their non-stationary (time-varying) behavior. Hence, a short time processing (framing) is applied to speech signals for converting them into the stationary frames. Signal models of stationary frames may be different. As a result, their high-band filters will vary. So, a Gaussian mixture modelling (GMM) codebook approach is used to store the high-band filters information along with their narrowband information (narrowband feature). This approach is also used to estimate the high-band filter information for a given narrowband feature of the signal. Performance analysis is done for the two types of narrowband information representations.\",\"PeriodicalId\":336454,\"journal\":{\"name\":\"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2019.8733452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2019.8733452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种窄带电话通信中人工带宽扩展(ABE)的新方法。在这方面,我们使用信号模型和H∞优化来获得一个表示信号宽带信息的合成滤波器。在窄带通信中,需要对高频带信息进行估计。因此,我们构造了一个保留了合成滤波器的高频带信息的高频带滤波器。由于不同语音信号的非平稳(时变)行为,信号模型可能不相同。因此,对语音信号进行短时间处理(分帧),将其转换为固定帧。固定框架的信号模型可能不同。因此,它们的高频段滤波器会有所不同。因此,使用高斯混合建模(GMM)码本方法来存储高频带滤波器信息及其窄带信息(窄带特征)。该方法也可用于估计给定窄带信号特征的高频带滤波器信息。对两种窄带信息表示方式进行了性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Bandwidth Extension Using H∞ Optimization and Speech Production Model
This work presents a new method for artificial bandwidth extension (ABE) in narrowband telephonic communication. In this regard, we use signal model and H∞ optimization to obtain a synthesis filter for representing the wideband information of a signal. We need to estimate the high-band information in narrowband communication. Hence, we construct a high-band filter which retains the high-band information of the synthesis filter. Signal models may not be the same for different speech signals because of their non-stationary (time-varying) behavior. Hence, a short time processing (framing) is applied to speech signals for converting them into the stationary frames. Signal models of stationary frames may be different. As a result, their high-band filters will vary. So, a Gaussian mixture modelling (GMM) codebook approach is used to store the high-band filters information along with their narrowband information (narrowband feature). This approach is also used to estimate the high-band filter information for a given narrowband feature of the signal. Performance analysis is done for the two types of narrowband information representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信