深度学习在人类语言中的情感检测:音频样本持续时间和英语与意大利语的影响

Alexander Wurst, Michael Hopwood, Sifan Wu, Fei Li, Yuan Yao
{"title":"深度学习在人类语言中的情感检测:音频样本持续时间和英语与意大利语的影响","authors":"Alexander Wurst, Michael Hopwood, Sifan Wu, Fei Li, Yuan Yao","doi":"10.1109/WOCC58016.2023.10139686","DOIUrl":null,"url":null,"abstract":"Identification of emotion types is important in the diagnosis and treatment of certain mental illnesses. This study uses audio data and deep learning methods such as convolutional neural networks (CNN) and long short-term memory (LSTM) to classify the emotion of human speech. We use the IEMOCAP and DEMoS datasets, consisting of English and Italian audio speech data in our experiments to classify speech into one of up to four emotions: angry, happy, neutral, and sad. The classification performance results demonstrate the effectiveness of the deep learning methods and our experiments yield between 62 and 92 percent classification accuracies. We specifically investigate the impact of the audio sample duration on the classification accuracy. In addition, we examine and compare the classification accuracy for English versus Italian languages.","PeriodicalId":226792,"journal":{"name":"2023 32nd Wireless and Optical Communications Conference (WOCC)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for the Detection of Emotion in Human Speech: The Impact of Audio Sample Duration and English versus Italian Languages\",\"authors\":\"Alexander Wurst, Michael Hopwood, Sifan Wu, Fei Li, Yuan Yao\",\"doi\":\"10.1109/WOCC58016.2023.10139686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identification of emotion types is important in the diagnosis and treatment of certain mental illnesses. This study uses audio data and deep learning methods such as convolutional neural networks (CNN) and long short-term memory (LSTM) to classify the emotion of human speech. We use the IEMOCAP and DEMoS datasets, consisting of English and Italian audio speech data in our experiments to classify speech into one of up to four emotions: angry, happy, neutral, and sad. The classification performance results demonstrate the effectiveness of the deep learning methods and our experiments yield between 62 and 92 percent classification accuracies. We specifically investigate the impact of the audio sample duration on the classification accuracy. In addition, we examine and compare the classification accuracy for English versus Italian languages.\",\"PeriodicalId\":226792,\"journal\":{\"name\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 32nd Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC58016.2023.10139686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC58016.2023.10139686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情绪类型的识别在某些精神疾病的诊断和治疗中很重要。本研究使用音频数据和卷积神经网络(CNN)、长短期记忆(LSTM)等深度学习方法对人类语言的情感进行分类。在我们的实验中,我们使用IEMOCAP和DEMoS数据集,包括英语和意大利语音频语音数据,将语音分为四种情绪:愤怒,快乐,中性和悲伤。分类性能结果证明了深度学习方法的有效性,我们的实验产生了62%到92%的分类准确率。我们具体研究了音频样本持续时间对分类精度的影响。此外,我们检查并比较了英语和意大利语的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for the Detection of Emotion in Human Speech: The Impact of Audio Sample Duration and English versus Italian Languages
Identification of emotion types is important in the diagnosis and treatment of certain mental illnesses. This study uses audio data and deep learning methods such as convolutional neural networks (CNN) and long short-term memory (LSTM) to classify the emotion of human speech. We use the IEMOCAP and DEMoS datasets, consisting of English and Italian audio speech data in our experiments to classify speech into one of up to four emotions: angry, happy, neutral, and sad. The classification performance results demonstrate the effectiveness of the deep learning methods and our experiments yield between 62 and 92 percent classification accuracies. We specifically investigate the impact of the audio sample duration on the classification accuracy. In addition, we examine and compare the classification accuracy for English versus Italian languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信