基于向量的机器学习动态红外下降预测

Jia Chen, Shi-Tang Liu, Yuehua Wu, Mu-Ting Wu, Chieo-Mo Li, Norman Chang, Ying-Shiun Li, Wentze Chuang
{"title":"基于向量的机器学习动态红外下降预测","authors":"Jia Chen, Shi-Tang Liu, Yuehua Wu, Mu-Ting Wu, Chieo-Mo Li, Norman Chang, Ying-Shiun Li, Wentze Chuang","doi":"10.1109/ASP-DAC52403.2022.9712489","DOIUrl":null,"url":null,"abstract":"Vector-based dynamic IR-drop analysis of the entire vector set is infeasible due to long runtime. In this paper, we use machine learning to perform vector-based IR drop prediction for all logic cells in the circuit. We extract important features, such as toggle counts and arrival time, directly from the logic simulation waveform so that we can perform vector-based IR-drop prediction quickly. We also propose a feature engineering method, density map, to increase correlation by 0.1. Our method is scalable because the feature dimension is fixed (72), independent of design size and cell library. Our experiments show that the mean absolute error of the predictor is less than 3% of the nominal supply voltage. We achieve more than 495 speedups compared to a popular commercial tool. Our machine learning prediction can be used to identify IR-drop risky vectors from the entire test vector set, which is infeasible using traditional IR-drop analysis.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vector-based Dynamic IR-drop Prediction Using Machine Learning\",\"authors\":\"Jia Chen, Shi-Tang Liu, Yuehua Wu, Mu-Ting Wu, Chieo-Mo Li, Norman Chang, Ying-Shiun Li, Wentze Chuang\",\"doi\":\"10.1109/ASP-DAC52403.2022.9712489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector-based dynamic IR-drop analysis of the entire vector set is infeasible due to long runtime. In this paper, we use machine learning to perform vector-based IR drop prediction for all logic cells in the circuit. We extract important features, such as toggle counts and arrival time, directly from the logic simulation waveform so that we can perform vector-based IR-drop prediction quickly. We also propose a feature engineering method, density map, to increase correlation by 0.1. Our method is scalable because the feature dimension is fixed (72), independent of design size and cell library. Our experiments show that the mean absolute error of the predictor is less than 3% of the nominal supply voltage. We achieve more than 495 speedups compared to a popular commercial tool. Our machine learning prediction can be used to identify IR-drop risky vectors from the entire test vector set, which is infeasible using traditional IR-drop analysis.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC52403.2022.9712489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于运行时间长,对整个向量集进行基于矢量的动态IR-drop分析是不可行的。在本文中,我们使用机器学习对电路中的所有逻辑单元进行基于向量的IR下降预测。我们直接从逻辑仿真波形中提取重要特征,如切换计数和到达时间,以便我们可以快速执行基于向量的ir下降预测。我们还提出了一种特征工程方法,密度图,将相关性提高0.1。我们的方法是可扩展的,因为特征维度是固定的(72),独立于设计大小和单元库。我们的实验表明,预测器的平均绝对误差小于标称电源电压的3%。与流行的商业工具相比,我们实现了超过495次加速。我们的机器学习预测可以从整个测试向量集中识别出IR-drop风险向量,这是传统IR-drop分析无法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-based Dynamic IR-drop Prediction Using Machine Learning
Vector-based dynamic IR-drop analysis of the entire vector set is infeasible due to long runtime. In this paper, we use machine learning to perform vector-based IR drop prediction for all logic cells in the circuit. We extract important features, such as toggle counts and arrival time, directly from the logic simulation waveform so that we can perform vector-based IR-drop prediction quickly. We also propose a feature engineering method, density map, to increase correlation by 0.1. Our method is scalable because the feature dimension is fixed (72), independent of design size and cell library. Our experiments show that the mean absolute error of the predictor is less than 3% of the nominal supply voltage. We achieve more than 495 speedups compared to a popular commercial tool. Our machine learning prediction can be used to identify IR-drop risky vectors from the entire test vector set, which is infeasible using traditional IR-drop analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信