视频字幕的协同分割辅助双流架构

Jayesh Vaidya, Arulkumar Subramaniam, Anurag Mittal
{"title":"视频字幕的协同分割辅助双流架构","authors":"Jayesh Vaidya, Arulkumar Subramaniam, Anurag Mittal","doi":"10.1109/WACV51458.2022.00250","DOIUrl":null,"url":null,"abstract":"The goal of video captioning is to generate captions for a video by understanding visual and temporal cues. A general video captioning model consists of an Encoder-Decoder framework where Encoder generally captures the visual and temporal information while the decoder generates captions. Recent works have incorporated object-level information into the Encoder by a pretrained off-the-shelf object detector, significantly improving performance. However, using an object detector comes with the following downsides: 1) object detectors may not exhaustively capture all the object categories. 2) In a realistic setting, the performance may be influenced by the domain gap between the object-detector and the visual-captioning dataset. To remedy this, we argue that using an external object detector could be eliminated if the model is equipped with the capability of automatically finding salient regions. To achieve this, we propose a novel architecture that learns to attend to salient regions such as objects, persons automatically using a co-segmentation inspired attention module. Then, we utilize a novel salient region interaction module to promote information propagation between salient regions of adjacent frames. Further, we incorporate this salient region-level information into the model using knowledge distillation. We evaluate our model on two benchmark datasets MSR-VTT and MSVD, and show that our model achieves competitive performance without using any object detector.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Co-Segmentation Aided Two-Stream Architecture for Video Captioning\",\"authors\":\"Jayesh Vaidya, Arulkumar Subramaniam, Anurag Mittal\",\"doi\":\"10.1109/WACV51458.2022.00250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of video captioning is to generate captions for a video by understanding visual and temporal cues. A general video captioning model consists of an Encoder-Decoder framework where Encoder generally captures the visual and temporal information while the decoder generates captions. Recent works have incorporated object-level information into the Encoder by a pretrained off-the-shelf object detector, significantly improving performance. However, using an object detector comes with the following downsides: 1) object detectors may not exhaustively capture all the object categories. 2) In a realistic setting, the performance may be influenced by the domain gap between the object-detector and the visual-captioning dataset. To remedy this, we argue that using an external object detector could be eliminated if the model is equipped with the capability of automatically finding salient regions. To achieve this, we propose a novel architecture that learns to attend to salient regions such as objects, persons automatically using a co-segmentation inspired attention module. Then, we utilize a novel salient region interaction module to promote information propagation between salient regions of adjacent frames. Further, we incorporate this salient region-level information into the model using knowledge distillation. We evaluate our model on two benchmark datasets MSR-VTT and MSVD, and show that our model achieves competitive performance without using any object detector.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视频字幕的目标是通过理解视觉和时间线索为视频生成字幕。一般的视频字幕模型由编码器-解码器框架组成,其中编码器通常捕获视觉和时间信息,而解码器生成字幕。最近的工作通过预训练的现成对象检测器将对象级信息整合到编码器中,显著提高了性能。然而,使用对象检测器有以下缺点:1)对象检测器可能无法详尽地捕获所有对象类别。2)在现实环境中,目标检测器和视觉字幕数据集之间的域间隙可能会影响性能。为了弥补这一点,我们认为,如果模型配备了自动发现显著区域的能力,则可以消除使用外部目标检测器。为了实现这一目标,我们提出了一种新的架构,该架构可以学习关注突出区域,如物体、人,自动使用共同分割启发的注意力模块。然后,我们利用一个新的显著区域交互模块来促进相邻帧显著区域之间的信息传播。此外,我们利用知识蒸馏将这些显著的区域级信息纳入模型。我们在两个基准数据集MSR-VTT和MSVD上对我们的模型进行了评估,并表明我们的模型在不使用任何目标检测器的情况下取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Segmentation Aided Two-Stream Architecture for Video Captioning
The goal of video captioning is to generate captions for a video by understanding visual and temporal cues. A general video captioning model consists of an Encoder-Decoder framework where Encoder generally captures the visual and temporal information while the decoder generates captions. Recent works have incorporated object-level information into the Encoder by a pretrained off-the-shelf object detector, significantly improving performance. However, using an object detector comes with the following downsides: 1) object detectors may not exhaustively capture all the object categories. 2) In a realistic setting, the performance may be influenced by the domain gap between the object-detector and the visual-captioning dataset. To remedy this, we argue that using an external object detector could be eliminated if the model is equipped with the capability of automatically finding salient regions. To achieve this, we propose a novel architecture that learns to attend to salient regions such as objects, persons automatically using a co-segmentation inspired attention module. Then, we utilize a novel salient region interaction module to promote information propagation between salient regions of adjacent frames. Further, we incorporate this salient region-level information into the model using knowledge distillation. We evaluate our model on two benchmark datasets MSR-VTT and MSVD, and show that our model achieves competitive performance without using any object detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信