计算效率的非线性模型预测控制

Zhijia Yang, Byron Mason, Wen Gu, E. Winward, J. Knowles
{"title":"计算效率的非线性模型预测控制","authors":"Zhijia Yang, Byron Mason, Wen Gu, E. Winward, J. Knowles","doi":"10.1109/CoDIT55151.2022.9803958","DOIUrl":null,"url":null,"abstract":"For nonlinear systems, Nonlinear Model Predictive Control (NMPC) is preferred to linear Model Predictive Control(MPC) since the nonlinear dynamics of the plant and the control performance index can be incorporated directly. In certain applications the computational resources available for calculating the control solution are severely restricted or the solution is required at high frequency. To overcome these computational challenges this paper presents a computationally efficient update scheme for NMPC using the Forward Dif-ference Generalized Minimum RESidual (FDGMRES) method with a neuro-fuzzy nonlinear dynamic model to describe the plant. Following a description of the FDGMRES approach and a simple case study, an evaluation of the algorithms computational performance is presented using the example of a reference tracking controller for control of a nonlinear Continuously Stirred Tank Reactor (CSTR) system. The online execution time of the FDGMRES algorithm based controller is compared in real time with the more conventional approach of the Sequential Quadratic Programming (SQP) algorithm using Rapid Controls Prototyping hardware.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally Efficient Nonlinear Model Predictive Control\",\"authors\":\"Zhijia Yang, Byron Mason, Wen Gu, E. Winward, J. Knowles\",\"doi\":\"10.1109/CoDIT55151.2022.9803958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For nonlinear systems, Nonlinear Model Predictive Control (NMPC) is preferred to linear Model Predictive Control(MPC) since the nonlinear dynamics of the plant and the control performance index can be incorporated directly. In certain applications the computational resources available for calculating the control solution are severely restricted or the solution is required at high frequency. To overcome these computational challenges this paper presents a computationally efficient update scheme for NMPC using the Forward Dif-ference Generalized Minimum RESidual (FDGMRES) method with a neuro-fuzzy nonlinear dynamic model to describe the plant. Following a description of the FDGMRES approach and a simple case study, an evaluation of the algorithms computational performance is presented using the example of a reference tracking controller for control of a nonlinear Continuously Stirred Tank Reactor (CSTR) system. The online execution time of the FDGMRES algorithm based controller is compared in real time with the more conventional approach of the Sequential Quadratic Programming (SQP) algorithm using Rapid Controls Prototyping hardware.\",\"PeriodicalId\":185510,\"journal\":{\"name\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT55151.2022.9803958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9803958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于非线性系统,非线性模型预测控制(NMPC)优于线性模型预测控制(MPC),因为非线性模型预测控制可以直接纳入对象的非线性动力学和控制性能指标。在某些应用中,可用于计算控制解的计算资源受到严重限制,或者需要在高频率下求解。为了克服这些计算难题,本文提出了一种计算效率高的NMPC更新方案,采用前向差分广义最小残差(FDGMRES)方法和神经模糊非线性动态模型来描述被控对象。在描述了FDGMRES方法和一个简单的案例研究之后,以非线性连续搅拌槽式反应器(CSTR)系统的参考跟踪控制器为例,对该算法的计算性能进行了评估。利用快速控制原型硬件,实时比较了基于FDGMRES算法的控制器的在线执行时间与更传统的序列二次规划(SQP)算法的在线执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally Efficient Nonlinear Model Predictive Control
For nonlinear systems, Nonlinear Model Predictive Control (NMPC) is preferred to linear Model Predictive Control(MPC) since the nonlinear dynamics of the plant and the control performance index can be incorporated directly. In certain applications the computational resources available for calculating the control solution are severely restricted or the solution is required at high frequency. To overcome these computational challenges this paper presents a computationally efficient update scheme for NMPC using the Forward Dif-ference Generalized Minimum RESidual (FDGMRES) method with a neuro-fuzzy nonlinear dynamic model to describe the plant. Following a description of the FDGMRES approach and a simple case study, an evaluation of the algorithms computational performance is presented using the example of a reference tracking controller for control of a nonlinear Continuously Stirred Tank Reactor (CSTR) system. The online execution time of the FDGMRES algorithm based controller is compared in real time with the more conventional approach of the Sequential Quadratic Programming (SQP) algorithm using Rapid Controls Prototyping hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信