一种高效k近邻计算的哈希策略

M. Vanco, G. Brunnett, Thomas Schreiber
{"title":"一种高效k近邻计算的哈希策略","authors":"M. Vanco, G. Brunnett, Thomas Schreiber","doi":"10.1109/CGI.1999.777924","DOIUrl":null,"url":null,"abstract":"The problem of k-nearest neighbors computation within a 3D data set is frequently encountered in computer graphics. Applications include the technique of photon-map rendering where the closest photons to a given one have to be identified and the segmentation phase within a reverse engineering process. We present a new algorithm for k-nearest neighbors computation based on median subdivision and a hashing strategy. The major advantage of our hashing function is that bounds can be established that limit the number of points to be inspected during the search process. Estimates for the asymptotic complexity of our search method are given. Finally we compare our algorithm with a different search strategy based on KD-Trees.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A hashing strategy for efficient k-nearest neighbors computation\",\"authors\":\"M. Vanco, G. Brunnett, Thomas Schreiber\",\"doi\":\"10.1109/CGI.1999.777924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of k-nearest neighbors computation within a 3D data set is frequently encountered in computer graphics. Applications include the technique of photon-map rendering where the closest photons to a given one have to be identified and the segmentation phase within a reverse engineering process. We present a new algorithm for k-nearest neighbors computation based on median subdivision and a hashing strategy. The major advantage of our hashing function is that bounds can be established that limit the number of points to be inspected during the search process. Estimates for the asymptotic complexity of our search method are given. Finally we compare our algorithm with a different search strategy based on KD-Trees.\",\"PeriodicalId\":165593,\"journal\":{\"name\":\"1999 Proceedings Computer Graphics International\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Proceedings Computer Graphics International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGI.1999.777924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

三维数据集的k近邻计算问题是计算机图形学中经常遇到的问题。应用包括光子映射绘制技术,其中必须识别最接近给定光子的光子,以及逆向工程过程中的分割阶段。提出了一种基于中位数细分和哈希策略的k近邻计算新算法。我们的哈希函数的主要优点是可以建立边界,限制在搜索过程中要检查的点的数量。给出了搜索方法的渐近复杂度估计。最后,我们将该算法与基于kd树的不同搜索策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hashing strategy for efficient k-nearest neighbors computation
The problem of k-nearest neighbors computation within a 3D data set is frequently encountered in computer graphics. Applications include the technique of photon-map rendering where the closest photons to a given one have to be identified and the segmentation phase within a reverse engineering process. We present a new algorithm for k-nearest neighbors computation based on median subdivision and a hashing strategy. The major advantage of our hashing function is that bounds can be established that limit the number of points to be inspected during the search process. Estimates for the asymptotic complexity of our search method are given. Finally we compare our algorithm with a different search strategy based on KD-Trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信