微能量收集器中近最优静电力的自适应估计

Masoud Roudneshin, K. Sayrafian-Pour, A. Aghdam
{"title":"微能量收集器中近最优静电力的自适应估计","authors":"Masoud Roudneshin, K. Sayrafian-Pour, A. Aghdam","doi":"10.1109/CCTA41146.2020.9206354","DOIUrl":null,"url":null,"abstract":"Recent advancements in micro-electronics have led to the development of miniature-sized wearable sensors that can be used for a variety of health monitoring applications. These sensors are typically powered by small batteries which could require frequent recharge. Energy harvesting can reduce the charging frequency of these sensors. Longer operational lifetime can simplify the everyday use of these wearable sensors in many applications. Our objective in this paper is to maximize the output power of a kinetic-based micro energy-harvester. A hybrid machine learning and analytical approach is proposed to adaptively adjust the electrostatic force in a harvester with Coulomb-Force Parametric Generator (CFPG) architecture. The results show considerable improvement in the output power.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Estimation of Near-Optimal Electrostatic Force in Micro Energy-Harvesters\",\"authors\":\"Masoud Roudneshin, K. Sayrafian-Pour, A. Aghdam\",\"doi\":\"10.1109/CCTA41146.2020.9206354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in micro-electronics have led to the development of miniature-sized wearable sensors that can be used for a variety of health monitoring applications. These sensors are typically powered by small batteries which could require frequent recharge. Energy harvesting can reduce the charging frequency of these sensors. Longer operational lifetime can simplify the everyday use of these wearable sensors in many applications. Our objective in this paper is to maximize the output power of a kinetic-based micro energy-harvester. A hybrid machine learning and analytical approach is proposed to adaptively adjust the electrostatic force in a harvester with Coulomb-Force Parametric Generator (CFPG) architecture. The results show considerable improvement in the output power.\",\"PeriodicalId\":241335,\"journal\":{\"name\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA41146.2020.9206354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微电子学的最新进展导致了可用于各种健康监测应用的微型可穿戴传感器的发展。这些传感器通常由小电池供电,需要经常充电。能量收集可以降低这些传感器的充电频率。更长的使用寿命可以简化这些可穿戴传感器在许多应用中的日常使用。我们在本文中的目标是最大限度地提高基于动力学的微型能量收集器的输出功率。提出了一种混合机器学习和分析的方法来自适应调整库仑-力参数发生器(CFPG)结构的收割机中的静电力。结果表明,输出功率有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Estimation of Near-Optimal Electrostatic Force in Micro Energy-Harvesters
Recent advancements in micro-electronics have led to the development of miniature-sized wearable sensors that can be used for a variety of health monitoring applications. These sensors are typically powered by small batteries which could require frequent recharge. Energy harvesting can reduce the charging frequency of these sensors. Longer operational lifetime can simplify the everyday use of these wearable sensors in many applications. Our objective in this paper is to maximize the output power of a kinetic-based micro energy-harvester. A hybrid machine learning and analytical approach is proposed to adaptively adjust the electrostatic force in a harvester with Coulomb-Force Parametric Generator (CFPG) architecture. The results show considerable improvement in the output power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信