卷积神经网络在免疫细胞化学研究中的应用

D. Parpulov, A. Samorodov, D. Makhov, E. Slavnova, N. Volchenko, V. Iglovikov
{"title":"卷积神经网络在免疫细胞化学研究中的应用","authors":"D. Parpulov, A. Samorodov, D. Makhov, E. Slavnova, N. Volchenko, V. Iglovikov","doi":"10.1109/USBEREIT.2018.8384557","DOIUrl":null,"url":null,"abstract":"HER2/neu status of breast cancer is important for treatment strategy choice, but nowadays it is evaluated manually by pathologist. The automation of this procedure is an urgent task, because it will allow to free a pathologist from routine work. But the problem of cells segmentation is difficult for classical methods of computer vision due to the frequent presence of erythrocytic background and non-cellular elements at specimen' image. In this work we propose segmentation algorithm, based on deep convolutional neural networks. Is it has been shown that using this approach, it's possible to get better results, than using classical computer vision algorithms.","PeriodicalId":176222,"journal":{"name":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Convolutional neural network application for cells segmentation in immunocytochemical study\",\"authors\":\"D. Parpulov, A. Samorodov, D. Makhov, E. Slavnova, N. Volchenko, V. Iglovikov\",\"doi\":\"10.1109/USBEREIT.2018.8384557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HER2/neu status of breast cancer is important for treatment strategy choice, but nowadays it is evaluated manually by pathologist. The automation of this procedure is an urgent task, because it will allow to free a pathologist from routine work. But the problem of cells segmentation is difficult for classical methods of computer vision due to the frequent presence of erythrocytic background and non-cellular elements at specimen' image. In this work we propose segmentation algorithm, based on deep convolutional neural networks. Is it has been shown that using this approach, it's possible to get better results, than using classical computer vision algorithms.\",\"PeriodicalId\":176222,\"journal\":{\"name\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USBEREIT.2018.8384557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USBEREIT.2018.8384557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

乳腺癌的HER2/neu状态对治疗策略的选择很重要,但目前仍由病理学家手工评估。这一程序的自动化是一项紧迫的任务,因为它将使病理学家从日常工作中解脱出来。但由于标本图像中经常存在红细胞背景和非细胞元素,传统的计算机视觉方法难以进行细胞分割。在这项工作中,我们提出了基于深度卷积神经网络的分割算法。已经证明,使用这种方法,可能比使用经典的计算机视觉算法得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional neural network application for cells segmentation in immunocytochemical study
HER2/neu status of breast cancer is important for treatment strategy choice, but nowadays it is evaluated manually by pathologist. The automation of this procedure is an urgent task, because it will allow to free a pathologist from routine work. But the problem of cells segmentation is difficult for classical methods of computer vision due to the frequent presence of erythrocytic background and non-cellular elements at specimen' image. In this work we propose segmentation algorithm, based on deep convolutional neural networks. Is it has been shown that using this approach, it's possible to get better results, than using classical computer vision algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信