背景知识感知语义编码模型选择

Fangzhou Zhao, Yao Sun, Runze Cheng, M. Imran
{"title":"背景知识感知语义编码模型选择","authors":"Fangzhou Zhao, Yao Sun, Runze Cheng, M. Imran","doi":"10.1109/ICCT56141.2022.10072458","DOIUrl":null,"url":null,"abstract":"Semantic communication is deemed to break Shannon channel capacity by transmitting extracted semantics rather than all binary bits. One critical challenge in semantic communication system is how to select a matching semantic coding model (SCM) in light of complicated source information, diversified user background knowledge (BK) and dynamic wireless channel. In this paper, we mathematically model the relationship among different BKs by using graph theory, and introduce a metric to evaluate SCMs performance as per BK relationships. Then, we propose a Background knowledge Aware SCM SElection (BASE) scheme, where a deep learning algorithm is exploited to accurately predict SCM performance in context of the modeled BK, guiding the SCM selection. Numerical simulation results show that the BASE has superiorities in information recovery accuracy along with the probability of selecting the optimal SCM when compared with other benchmarks.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Background Knowledge Aware Semantic Coding Model Selection\",\"authors\":\"Fangzhou Zhao, Yao Sun, Runze Cheng, M. Imran\",\"doi\":\"10.1109/ICCT56141.2022.10072458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic communication is deemed to break Shannon channel capacity by transmitting extracted semantics rather than all binary bits. One critical challenge in semantic communication system is how to select a matching semantic coding model (SCM) in light of complicated source information, diversified user background knowledge (BK) and dynamic wireless channel. In this paper, we mathematically model the relationship among different BKs by using graph theory, and introduce a metric to evaluate SCMs performance as per BK relationships. Then, we propose a Background knowledge Aware SCM SElection (BASE) scheme, where a deep learning algorithm is exploited to accurately predict SCM performance in context of the modeled BK, guiding the SCM selection. Numerical simulation results show that the BASE has superiorities in information recovery accuracy along with the probability of selecting the optimal SCM when compared with other benchmarks.\",\"PeriodicalId\":294057,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Communication Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT56141.2022.10072458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10072458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语义通信被认为通过传输提取的语义而不是所有二进制位来破坏香农信道的容量。如何在复杂的信源信息、多样化的用户背景知识和动态的无线信道中选择合适的语义编码模型是语义通信系统面临的一个关键挑战。本文利用图论对不同BK之间的关系进行数学建模,并根据BK关系引入一个度量来评价scm的性能。然后,我们提出了一种背景知识感知SCM选择(BASE)方案,该方案利用深度学习算法在建模的BK背景下准确预测SCM性能,指导SCM选择。数值仿真结果表明,与其他基准相比,该基准在信息恢复精度和选择最优SCM的概率方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Background Knowledge Aware Semantic Coding Model Selection
Semantic communication is deemed to break Shannon channel capacity by transmitting extracted semantics rather than all binary bits. One critical challenge in semantic communication system is how to select a matching semantic coding model (SCM) in light of complicated source information, diversified user background knowledge (BK) and dynamic wireless channel. In this paper, we mathematically model the relationship among different BKs by using graph theory, and introduce a metric to evaluate SCMs performance as per BK relationships. Then, we propose a Background knowledge Aware SCM SElection (BASE) scheme, where a deep learning algorithm is exploited to accurately predict SCM performance in context of the modeled BK, guiding the SCM selection. Numerical simulation results show that the BASE has superiorities in information recovery accuracy along with the probability of selecting the optimal SCM when compared with other benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信