{"title":"相应的力矩阵:桥梁连接基于壳的箱梁精细化分析与配筋设计","authors":"Yu Zhang, Haili Jiang, Dong Xu","doi":"10.2749/nanjing.2022.0483","DOIUrl":null,"url":null,"abstract":"Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.","PeriodicalId":410450,"journal":{"name":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corresponding Force Matrix: A Bridge Connecting Refined Analysis and Reinforcement Design of Box-section Girders Based on Shells\",\"authors\":\"Yu Zhang, Haili Jiang, Dong Xu\",\"doi\":\"10.2749/nanjing.2022.0483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.\",\"PeriodicalId\":410450,\"journal\":{\"name\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2749/nanjing.2022.0483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Congress, Nanjing 2022: Bridges and Structures: Connection, Integration and Harmonisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/nanjing.2022.0483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Corresponding Force Matrix: A Bridge Connecting Refined Analysis and Reinforcement Design of Box-section Girders Based on Shells
Benefitting from the development of computing power, box girders can be analysed in a more refined way by discretizing cross-sections into shell elements. However, how to take full advantage of the analysis results in the reinforcement design process remains a problem. To solve this problem, the concept of “corresponding force matrix” is proposed in this paper. The matrix has 6 columns corresponding to the key unit force resultants of a specified location, and 12 rows corresponding to all the possible unfavourable cases. For each row, only one force resultant reaches its maximum (or minimum) under loads while the others take the corresponding values. Then the construction method of the proposed matrix under live loads and load combinations is described, respectively. After that, two reinforcement design methods with the use of the matrix were introduced and compared. Finally, discussions and preliminary conclusions are made.