针对卫星和机载雷达处理的FFT优化和性能评估

Maron Schlemon, J. Naghmouchi
{"title":"针对卫星和机载雷达处理的FFT优化和性能评估","authors":"Maron Schlemon, J. Naghmouchi","doi":"10.1109/SBAC-PAD49847.2020.00050","DOIUrl":null,"url":null,"abstract":"Following the re-invention of the FFT algorithm by Cooley and Tukey in 1965, a lot of effort has been invested into optimization of this algorithm and all its variations. In this paper, we discuss its use and optimization for current and future radar applications, and give a brief survey on implementations that have claimed relatively high advantages in terms of performance over existing solutions. Correspondingly, we present an in-depth analysis of state-ofthe-art solutions and our own implementation that will allow the reader to evaluate the performance improvements on a fair basis. Therefore, we discuss the development of a highperformance Fast Fourier Transform (FFT) using an enhanced Radix-4 decimation in frequency (DIF) algorithm, compare it against the Fastest Fourier Transform in the West (FFTW) autotuned library as well as other solutions and frameworks.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FFT Optimizations and Performance Assessment Targeted towards Satellite and Airborne Radar Processing\",\"authors\":\"Maron Schlemon, J. Naghmouchi\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the re-invention of the FFT algorithm by Cooley and Tukey in 1965, a lot of effort has been invested into optimization of this algorithm and all its variations. In this paper, we discuss its use and optimization for current and future radar applications, and give a brief survey on implementations that have claimed relatively high advantages in terms of performance over existing solutions. Correspondingly, we present an in-depth analysis of state-ofthe-art solutions and our own implementation that will allow the reader to evaluate the performance improvements on a fair basis. Therefore, we discuss the development of a highperformance Fast Fourier Transform (FFT) using an enhanced Radix-4 decimation in frequency (DIF) algorithm, compare it against the Fastest Fourier Transform in the West (FFTW) autotuned library as well as other solutions and frameworks.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在1965年Cooley和Tukey重新发明FFT算法之后,人们投入了大量精力来优化该算法及其所有变体。在本文中,我们讨论了它在当前和未来雷达应用中的使用和优化,并简要介绍了在性能方面比现有解决方案具有相对较高优势的实现。相应地,我们对最先进的解决方案和我们自己的实现进行了深入分析,使读者能够在公平的基础上评估性能改进。因此,我们讨论了使用增强的基数-4频率抽取(DIF)算法开发高性能快速傅里叶变换(FFT),并将其与西方最快傅里叶变换(FFTW)自动调谐库以及其他解决方案和框架进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FFT Optimizations and Performance Assessment Targeted towards Satellite and Airborne Radar Processing
Following the re-invention of the FFT algorithm by Cooley and Tukey in 1965, a lot of effort has been invested into optimization of this algorithm and all its variations. In this paper, we discuss its use and optimization for current and future radar applications, and give a brief survey on implementations that have claimed relatively high advantages in terms of performance over existing solutions. Correspondingly, we present an in-depth analysis of state-ofthe-art solutions and our own implementation that will allow the reader to evaluate the performance improvements on a fair basis. Therefore, we discuss the development of a highperformance Fast Fourier Transform (FFT) using an enhanced Radix-4 decimation in frequency (DIF) algorithm, compare it against the Fastest Fourier Transform in the West (FFTW) autotuned library as well as other solutions and frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信