缺失数据对α、β跟踪滤波器稳态性能的影响

R. Kassel, E. Baxa
{"title":"缺失数据对α、β跟踪滤波器稳态性能的影响","authors":"R. Kassel, E. Baxa","doi":"10.1109/SSST.1988.17106","DOIUrl":null,"url":null,"abstract":"The Kalman filter provides a recursive least-mean-square estimate of parameters in a dynamic system. Because the initial variances of the measurements used in the estimation are uncertain in a practical situation, a tracking filter can be optimum only in steady-state. The steady-state error of a version of the Kalman filter, called the alpha , beta filter, is analyzed under the assumption that missing data may occur. The results are developed for a constant-scan-rate radar. The number of intervals between valid data is modeled as a geometric random variable with the probability of valid data as a parameter. It is shown that missing data can introduce large additional tracking error for slowly scanning radars.<<ETX>>","PeriodicalId":345412,"journal":{"name":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The effect of missing data on the steady-state performance of an alpha , beta tracking filter\",\"authors\":\"R. Kassel, E. Baxa\",\"doi\":\"10.1109/SSST.1988.17106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kalman filter provides a recursive least-mean-square estimate of parameters in a dynamic system. Because the initial variances of the measurements used in the estimation are uncertain in a practical situation, a tracking filter can be optimum only in steady-state. The steady-state error of a version of the Kalman filter, called the alpha , beta filter, is analyzed under the assumption that missing data may occur. The results are developed for a constant-scan-rate radar. The number of intervals between valid data is modeled as a geometric random variable with the probability of valid data as a parameter. It is shown that missing data can introduce large additional tracking error for slowly scanning radars.<<ETX>>\",\"PeriodicalId\":345412,\"journal\":{\"name\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1988.17106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. The Twentieth Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1988.17106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

卡尔曼滤波器提供了动态系统参数的递归最小均方估计。由于在实际情况下,用于估计的测量值的初始方差是不确定的,因此跟踪滤波器只有在稳态时才能达到最优。在假设可能出现数据缺失的情况下,分析了卡尔曼滤波器的稳态误差,称为α, β滤波器。研究结果适用于恒扫描速率雷达。有效数据之间的间隔数被建模为一个几何随机变量,有效数据的概率作为参数。研究表明,数据缺失会给慢扫描雷达带来较大的附加跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of missing data on the steady-state performance of an alpha , beta tracking filter
The Kalman filter provides a recursive least-mean-square estimate of parameters in a dynamic system. Because the initial variances of the measurements used in the estimation are uncertain in a practical situation, a tracking filter can be optimum only in steady-state. The steady-state error of a version of the Kalman filter, called the alpha , beta filter, is analyzed under the assumption that missing data may occur. The results are developed for a constant-scan-rate radar. The number of intervals between valid data is modeled as a geometric random variable with the probability of valid data as a parameter. It is shown that missing data can introduce large additional tracking error for slowly scanning radars.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信