基于2d姿态估计的老年人跌倒检测VA算法

Pichayakul Jenpoomjai, Potsawat Wosri, S. Ruengittinun, Chih-Lin Hu, Chalothon Chootong
{"title":"基于2d姿态估计的老年人跌倒检测VA算法","authors":"Pichayakul Jenpoomjai, Potsawat Wosri, S. Ruengittinun, Chih-Lin Hu, Chalothon Chootong","doi":"10.1109/Ubi-Media.2019.00053","DOIUrl":null,"url":null,"abstract":"This paper aims to reduce the losses in emergency cases of elderly falling in residential living environments. We design a falling detection system that can determine the human pose-estimation using the TensorFlow APIs to identify the falling of seniors. The proposed specific VA algorithm that considers time, velocity and acceleration factors of human movement, the falling detection system can better analyze the falling and obtain more accurate pose-estimation. To examine the proposed system, the experiments were conducted to testify basic specifications of fallings upon real data traces of human motion records. Results show the acceleration of human movement can relatively affect the classification of actions. the proposed approach achieves an accuracy of 88% on the test data on falling detection.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VA Algorithm for Elderly's Falling Detection with 2D-Pose-Estimation\",\"authors\":\"Pichayakul Jenpoomjai, Potsawat Wosri, S. Ruengittinun, Chih-Lin Hu, Chalothon Chootong\",\"doi\":\"10.1109/Ubi-Media.2019.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to reduce the losses in emergency cases of elderly falling in residential living environments. We design a falling detection system that can determine the human pose-estimation using the TensorFlow APIs to identify the falling of seniors. The proposed specific VA algorithm that considers time, velocity and acceleration factors of human movement, the falling detection system can better analyze the falling and obtain more accurate pose-estimation. To examine the proposed system, the experiments were conducted to testify basic specifications of fallings upon real data traces of human motion records. Results show the acceleration of human movement can relatively affect the classification of actions. the proposed approach achieves an accuracy of 88% on the test data on falling detection.\",\"PeriodicalId\":259542,\"journal\":{\"name\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Ubi-Media.2019.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文旨在减少老年人在居住环境中跌倒的紧急情况下的损失。我们设计了一个跌倒检测系统,该系统可以使用TensorFlow api来确定人体姿势估计,以识别老年人的跌倒。该算法考虑了人体运动的时间、速度和加速度等因素,使跌落检测系统能够更好地分析跌落并获得更准确的姿态估计。为了检验所提出的系统,进行了实验,以人体运动记录的真实数据痕迹来证明跌倒的基本规格。结果表明,人体运动加速度对动作分类有一定的影响。该方法对跌落检测的测试数据的准确率达到88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VA Algorithm for Elderly's Falling Detection with 2D-Pose-Estimation
This paper aims to reduce the losses in emergency cases of elderly falling in residential living environments. We design a falling detection system that can determine the human pose-estimation using the TensorFlow APIs to identify the falling of seniors. The proposed specific VA algorithm that considers time, velocity and acceleration factors of human movement, the falling detection system can better analyze the falling and obtain more accurate pose-estimation. To examine the proposed system, the experiments were conducted to testify basic specifications of fallings upon real data traces of human motion records. Results show the acceleration of human movement can relatively affect the classification of actions. the proposed approach achieves an accuracy of 88% on the test data on falling detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信