整合全球和地方促进

A. Lipitakis, G. Antzoulatos, S. Kotsiantis, M. Vrahatis
{"title":"整合全球和地方促进","authors":"A. Lipitakis, G. Antzoulatos, S. Kotsiantis, M. Vrahatis","doi":"10.1109/IISA.2015.7388123","DOIUrl":null,"url":null,"abstract":"Several data analysis problems require investigations of relationships between attributes in related heterogeneous databases, where different prediction models can be more appropriate for different regions. A new technique of integrating global and local boosting is proposed. A comparison with other well known and widely used combining methods on standard benchmark datasets has shown that the proposed technique leads to more accurate results.","PeriodicalId":433872,"journal":{"name":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating global and local boosting\",\"authors\":\"A. Lipitakis, G. Antzoulatos, S. Kotsiantis, M. Vrahatis\",\"doi\":\"10.1109/IISA.2015.7388123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several data analysis problems require investigations of relationships between attributes in related heterogeneous databases, where different prediction models can be more appropriate for different regions. A new technique of integrating global and local boosting is proposed. A comparison with other well known and widely used combining methods on standard benchmark datasets has shown that the proposed technique leads to more accurate results.\",\"PeriodicalId\":433872,\"journal\":{\"name\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA.2015.7388123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2015.7388123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些数据分析问题需要研究相关异构数据库中属性之间的关系,其中不同的预测模型可能更适合不同的区域。提出了一种综合全局和局部增强的新方法。在标准基准数据集上与其他已知和广泛使用的组合方法进行了比较,结果表明该方法可以获得更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating global and local boosting
Several data analysis problems require investigations of relationships between attributes in related heterogeneous databases, where different prediction models can be more appropriate for different regions. A new technique of integrating global and local boosting is proposed. A comparison with other well known and widely used combining methods on standard benchmark datasets has shown that the proposed technique leads to more accurate results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信